| Step | Hyp | Ref | Expression | 
						
							| 1 |  | 1n0 |  |-  1o =/= (/) | 
						
							| 2 | 1 | neii |  |-  -. 1o = (/) | 
						
							| 3 | 2 | intnanr |  |-  -. ( 1o = (/) /\ <. A , B >. = <. i , j >. ) | 
						
							| 4 |  | 1oex |  |-  1o e. _V | 
						
							| 5 |  | opex |  |-  <. A , B >. e. _V | 
						
							| 6 | 4 5 | opth |  |-  ( <. 1o , <. A , B >. >. = <. (/) , <. i , j >. >. <-> ( 1o = (/) /\ <. A , B >. = <. i , j >. ) ) | 
						
							| 7 | 3 6 | mtbir |  |-  -. <. 1o , <. A , B >. >. = <. (/) , <. i , j >. >. | 
						
							| 8 |  | goel |  |-  ( ( i e. _om /\ j e. _om ) -> ( i e.g j ) = <. (/) , <. i , j >. >. ) | 
						
							| 9 | 8 | eqeq2d |  |-  ( ( i e. _om /\ j e. _om ) -> ( <. 1o , <. A , B >. >. = ( i e.g j ) <-> <. 1o , <. A , B >. >. = <. (/) , <. i , j >. >. ) ) | 
						
							| 10 | 7 9 | mtbiri |  |-  ( ( i e. _om /\ j e. _om ) -> -. <. 1o , <. A , B >. >. = ( i e.g j ) ) | 
						
							| 11 | 10 | rgen2 |  |-  A. i e. _om A. j e. _om -. <. 1o , <. A , B >. >. = ( i e.g j ) | 
						
							| 12 |  | ralnex2 |  |-  ( A. i e. _om A. j e. _om -. <. 1o , <. A , B >. >. = ( i e.g j ) <-> -. E. i e. _om E. j e. _om <. 1o , <. A , B >. >. = ( i e.g j ) ) | 
						
							| 13 | 11 12 | mpbi |  |-  -. E. i e. _om E. j e. _om <. 1o , <. A , B >. >. = ( i e.g j ) | 
						
							| 14 | 13 | intnan |  |-  -. ( <. 1o , <. A , B >. >. e. _V /\ E. i e. _om E. j e. _om <. 1o , <. A , B >. >. = ( i e.g j ) ) | 
						
							| 15 |  | eqeq1 |  |-  ( x = <. 1o , <. A , B >. >. -> ( x = ( i e.g j ) <-> <. 1o , <. A , B >. >. = ( i e.g j ) ) ) | 
						
							| 16 | 15 | 2rexbidv |  |-  ( x = <. 1o , <. A , B >. >. -> ( E. i e. _om E. j e. _om x = ( i e.g j ) <-> E. i e. _om E. j e. _om <. 1o , <. A , B >. >. = ( i e.g j ) ) ) | 
						
							| 17 |  | fmla0 |  |-  ( Fmla ` (/) ) = { x e. _V | E. i e. _om E. j e. _om x = ( i e.g j ) } | 
						
							| 18 | 16 17 | elrab2 |  |-  ( <. 1o , <. A , B >. >. e. ( Fmla ` (/) ) <-> ( <. 1o , <. A , B >. >. e. _V /\ E. i e. _om E. j e. _om <. 1o , <. A , B >. >. = ( i e.g j ) ) ) | 
						
							| 19 | 14 18 | mtbir |  |-  -. <. 1o , <. A , B >. >. e. ( Fmla ` (/) ) | 
						
							| 20 |  | gonafv |  |-  ( ( A e. _V /\ B e. _V ) -> ( A |g B ) = <. 1o , <. A , B >. >. ) | 
						
							| 21 | 20 | eleq1d |  |-  ( ( A e. _V /\ B e. _V ) -> ( ( A |g B ) e. ( Fmla ` (/) ) <-> <. 1o , <. A , B >. >. e. ( Fmla ` (/) ) ) ) | 
						
							| 22 | 19 21 | mtbiri |  |-  ( ( A e. _V /\ B e. _V ) -> -. ( A |g B ) e. ( Fmla ` (/) ) ) | 
						
							| 23 |  | eqid |  |-  ( x e. ( _V X. _V ) |-> <. 1o , x >. ) = ( x e. ( _V X. _V ) |-> <. 1o , x >. ) | 
						
							| 24 | 23 | dmmptss |  |-  dom ( x e. ( _V X. _V ) |-> <. 1o , x >. ) C_ ( _V X. _V ) | 
						
							| 25 |  | relxp |  |-  Rel ( _V X. _V ) | 
						
							| 26 |  | relss |  |-  ( dom ( x e. ( _V X. _V ) |-> <. 1o , x >. ) C_ ( _V X. _V ) -> ( Rel ( _V X. _V ) -> Rel dom ( x e. ( _V X. _V ) |-> <. 1o , x >. ) ) ) | 
						
							| 27 | 24 25 26 | mp2 |  |-  Rel dom ( x e. ( _V X. _V ) |-> <. 1o , x >. ) | 
						
							| 28 |  | df-gona |  |-  |g = ( x e. ( _V X. _V ) |-> <. 1o , x >. ) | 
						
							| 29 | 28 | dmeqi |  |-  dom |g = dom ( x e. ( _V X. _V ) |-> <. 1o , x >. ) | 
						
							| 30 | 29 | releqi |  |-  ( Rel dom |g <-> Rel dom ( x e. ( _V X. _V ) |-> <. 1o , x >. ) ) | 
						
							| 31 | 27 30 | mpbir |  |-  Rel dom |g | 
						
							| 32 | 31 | ovprc |  |-  ( -. ( A e. _V /\ B e. _V ) -> ( A |g B ) = (/) ) | 
						
							| 33 |  | peano1 |  |-  (/) e. _om | 
						
							| 34 |  | fmlaomn0 |  |-  ( (/) e. _om -> (/) e/ ( Fmla ` (/) ) ) | 
						
							| 35 | 33 34 | ax-mp |  |-  (/) e/ ( Fmla ` (/) ) | 
						
							| 36 | 35 | neli |  |-  -. (/) e. ( Fmla ` (/) ) | 
						
							| 37 |  | eleq1 |  |-  ( ( A |g B ) = (/) -> ( ( A |g B ) e. ( Fmla ` (/) ) <-> (/) e. ( Fmla ` (/) ) ) ) | 
						
							| 38 | 36 37 | mtbiri |  |-  ( ( A |g B ) = (/) -> -. ( A |g B ) e. ( Fmla ` (/) ) ) | 
						
							| 39 | 32 38 | syl |  |-  ( -. ( A e. _V /\ B e. _V ) -> -. ( A |g B ) e. ( Fmla ` (/) ) ) | 
						
							| 40 | 22 39 | pm2.61i |  |-  -. ( A |g B ) e. ( Fmla ` (/) ) | 
						
							| 41 |  | fveq2 |  |-  ( N = (/) -> ( Fmla ` N ) = ( Fmla ` (/) ) ) | 
						
							| 42 | 41 | eleq2d |  |-  ( N = (/) -> ( ( A |g B ) e. ( Fmla ` N ) <-> ( A |g B ) e. ( Fmla ` (/) ) ) ) | 
						
							| 43 | 40 42 | mtbiri |  |-  ( N = (/) -> -. ( A |g B ) e. ( Fmla ` N ) ) | 
						
							| 44 | 43 | necon2ai |  |-  ( ( A |g B ) e. ( Fmla ` N ) -> N =/= (/) ) |