| Step | Hyp | Ref | Expression | 
						
							| 1 |  | df-goal |  |-  A.g i A = <. 2o , <. i , A >. >. | 
						
							| 2 |  | 2on0 |  |-  2o =/= (/) | 
						
							| 3 | 2 | neii |  |-  -. 2o = (/) | 
						
							| 4 | 3 | intnanr |  |-  -. ( 2o = (/) /\ <. i , A >. = <. k , j >. ) | 
						
							| 5 |  | 2oex |  |-  2o e. _V | 
						
							| 6 |  | opex |  |-  <. i , A >. e. _V | 
						
							| 7 | 5 6 | opth |  |-  ( <. 2o , <. i , A >. >. = <. (/) , <. k , j >. >. <-> ( 2o = (/) /\ <. i , A >. = <. k , j >. ) ) | 
						
							| 8 | 4 7 | mtbir |  |-  -. <. 2o , <. i , A >. >. = <. (/) , <. k , j >. >. | 
						
							| 9 |  | goel |  |-  ( ( k e. _om /\ j e. _om ) -> ( k e.g j ) = <. (/) , <. k , j >. >. ) | 
						
							| 10 | 9 | eqeq2d |  |-  ( ( k e. _om /\ j e. _om ) -> ( <. 2o , <. i , A >. >. = ( k e.g j ) <-> <. 2o , <. i , A >. >. = <. (/) , <. k , j >. >. ) ) | 
						
							| 11 | 8 10 | mtbiri |  |-  ( ( k e. _om /\ j e. _om ) -> -. <. 2o , <. i , A >. >. = ( k e.g j ) ) | 
						
							| 12 | 11 | rgen2 |  |-  A. k e. _om A. j e. _om -. <. 2o , <. i , A >. >. = ( k e.g j ) | 
						
							| 13 |  | ralnex2 |  |-  ( A. k e. _om A. j e. _om -. <. 2o , <. i , A >. >. = ( k e.g j ) <-> -. E. k e. _om E. j e. _om <. 2o , <. i , A >. >. = ( k e.g j ) ) | 
						
							| 14 | 12 13 | mpbi |  |-  -. E. k e. _om E. j e. _om <. 2o , <. i , A >. >. = ( k e.g j ) | 
						
							| 15 | 14 | intnan |  |-  -. ( <. 2o , <. i , A >. >. e. _V /\ E. k e. _om E. j e. _om <. 2o , <. i , A >. >. = ( k e.g j ) ) | 
						
							| 16 |  | eqeq1 |  |-  ( x = <. 2o , <. i , A >. >. -> ( x = ( k e.g j ) <-> <. 2o , <. i , A >. >. = ( k e.g j ) ) ) | 
						
							| 17 | 16 | 2rexbidv |  |-  ( x = <. 2o , <. i , A >. >. -> ( E. k e. _om E. j e. _om x = ( k e.g j ) <-> E. k e. _om E. j e. _om <. 2o , <. i , A >. >. = ( k e.g j ) ) ) | 
						
							| 18 |  | fmla0 |  |-  ( Fmla ` (/) ) = { x e. _V | E. k e. _om E. j e. _om x = ( k e.g j ) } | 
						
							| 19 | 17 18 | elrab2 |  |-  ( <. 2o , <. i , A >. >. e. ( Fmla ` (/) ) <-> ( <. 2o , <. i , A >. >. e. _V /\ E. k e. _om E. j e. _om <. 2o , <. i , A >. >. = ( k e.g j ) ) ) | 
						
							| 20 | 15 19 | mtbir |  |-  -. <. 2o , <. i , A >. >. e. ( Fmla ` (/) ) | 
						
							| 21 | 1 20 | eqneltri |  |-  -. A.g i A e. ( Fmla ` (/) ) | 
						
							| 22 |  | fveq2 |  |-  ( N = (/) -> ( Fmla ` N ) = ( Fmla ` (/) ) ) | 
						
							| 23 | 22 | eleq2d |  |-  ( N = (/) -> ( A.g i A e. ( Fmla ` N ) <-> A.g i A e. ( Fmla ` (/) ) ) ) | 
						
							| 24 | 21 23 | mtbiri |  |-  ( N = (/) -> -. A.g i A e. ( Fmla ` N ) ) | 
						
							| 25 | 24 | necon2ai |  |-  ( A.g i A e. ( Fmla ` N ) -> N =/= (/) ) |