| Step |
Hyp |
Ref |
Expression |
| 1 |
|
peano2 |
|- ( N e. _om -> suc N e. _om ) |
| 2 |
|
ovexd |
|- ( N e. _om -> ( a |g b ) e. _V ) |
| 3 |
|
isfmlasuc |
|- ( ( suc N e. _om /\ ( a |g b ) e. _V ) -> ( ( a |g b ) e. ( Fmla ` suc suc N ) <-> ( ( a |g b ) e. ( Fmla ` suc N ) \/ E. u e. ( Fmla ` suc N ) ( E. v e. ( Fmla ` suc N ) ( a |g b ) = ( u |g v ) \/ E. i e. _om ( a |g b ) = A.g i u ) ) ) ) |
| 4 |
1 2 3
|
syl2anc |
|- ( N e. _om -> ( ( a |g b ) e. ( Fmla ` suc suc N ) <-> ( ( a |g b ) e. ( Fmla ` suc N ) \/ E. u e. ( Fmla ` suc N ) ( E. v e. ( Fmla ` suc N ) ( a |g b ) = ( u |g v ) \/ E. i e. _om ( a |g b ) = A.g i u ) ) ) ) |
| 5 |
4
|
adantr |
|- ( ( N e. _om /\ ( ( a |g b ) e. ( Fmla ` suc N ) -> ( a e. ( Fmla ` suc N ) /\ b e. ( Fmla ` suc N ) ) ) ) -> ( ( a |g b ) e. ( Fmla ` suc suc N ) <-> ( ( a |g b ) e. ( Fmla ` suc N ) \/ E. u e. ( Fmla ` suc N ) ( E. v e. ( Fmla ` suc N ) ( a |g b ) = ( u |g v ) \/ E. i e. _om ( a |g b ) = A.g i u ) ) ) ) |
| 6 |
|
fmlasssuc |
|- ( suc N e. _om -> ( Fmla ` suc N ) C_ ( Fmla ` suc suc N ) ) |
| 7 |
1 6
|
syl |
|- ( N e. _om -> ( Fmla ` suc N ) C_ ( Fmla ` suc suc N ) ) |
| 8 |
7
|
sseld |
|- ( N e. _om -> ( a e. ( Fmla ` suc N ) -> a e. ( Fmla ` suc suc N ) ) ) |
| 9 |
7
|
sseld |
|- ( N e. _om -> ( b e. ( Fmla ` suc N ) -> b e. ( Fmla ` suc suc N ) ) ) |
| 10 |
8 9
|
anim12d |
|- ( N e. _om -> ( ( a e. ( Fmla ` suc N ) /\ b e. ( Fmla ` suc N ) ) -> ( a e. ( Fmla ` suc suc N ) /\ b e. ( Fmla ` suc suc N ) ) ) ) |
| 11 |
10
|
com12 |
|- ( ( a e. ( Fmla ` suc N ) /\ b e. ( Fmla ` suc N ) ) -> ( N e. _om -> ( a e. ( Fmla ` suc suc N ) /\ b e. ( Fmla ` suc suc N ) ) ) ) |
| 12 |
11
|
imim2i |
|- ( ( ( a |g b ) e. ( Fmla ` suc N ) -> ( a e. ( Fmla ` suc N ) /\ b e. ( Fmla ` suc N ) ) ) -> ( ( a |g b ) e. ( Fmla ` suc N ) -> ( N e. _om -> ( a e. ( Fmla ` suc suc N ) /\ b e. ( Fmla ` suc suc N ) ) ) ) ) |
| 13 |
12
|
com23 |
|- ( ( ( a |g b ) e. ( Fmla ` suc N ) -> ( a e. ( Fmla ` suc N ) /\ b e. ( Fmla ` suc N ) ) ) -> ( N e. _om -> ( ( a |g b ) e. ( Fmla ` suc N ) -> ( a e. ( Fmla ` suc suc N ) /\ b e. ( Fmla ` suc suc N ) ) ) ) ) |
| 14 |
13
|
impcom |
|- ( ( N e. _om /\ ( ( a |g b ) e. ( Fmla ` suc N ) -> ( a e. ( Fmla ` suc N ) /\ b e. ( Fmla ` suc N ) ) ) ) -> ( ( a |g b ) e. ( Fmla ` suc N ) -> ( a e. ( Fmla ` suc suc N ) /\ b e. ( Fmla ` suc suc N ) ) ) ) |
| 15 |
|
gonafv |
|- ( ( a e. _V /\ b e. _V ) -> ( a |g b ) = <. 1o , <. a , b >. >. ) |
| 16 |
15
|
el2v |
|- ( a |g b ) = <. 1o , <. a , b >. >. |
| 17 |
16
|
a1i |
|- ( ( u e. ( Fmla ` suc N ) /\ v e. ( Fmla ` suc N ) ) -> ( a |g b ) = <. 1o , <. a , b >. >. ) |
| 18 |
|
gonafv |
|- ( ( u e. ( Fmla ` suc N ) /\ v e. ( Fmla ` suc N ) ) -> ( u |g v ) = <. 1o , <. u , v >. >. ) |
| 19 |
17 18
|
eqeq12d |
|- ( ( u e. ( Fmla ` suc N ) /\ v e. ( Fmla ` suc N ) ) -> ( ( a |g b ) = ( u |g v ) <-> <. 1o , <. a , b >. >. = <. 1o , <. u , v >. >. ) ) |
| 20 |
|
1oex |
|- 1o e. _V |
| 21 |
|
opex |
|- <. a , b >. e. _V |
| 22 |
20 21
|
opth |
|- ( <. 1o , <. a , b >. >. = <. 1o , <. u , v >. >. <-> ( 1o = 1o /\ <. a , b >. = <. u , v >. ) ) |
| 23 |
19 22
|
bitrdi |
|- ( ( u e. ( Fmla ` suc N ) /\ v e. ( Fmla ` suc N ) ) -> ( ( a |g b ) = ( u |g v ) <-> ( 1o = 1o /\ <. a , b >. = <. u , v >. ) ) ) |
| 24 |
23
|
adantll |
|- ( ( ( N e. _om /\ u e. ( Fmla ` suc N ) ) /\ v e. ( Fmla ` suc N ) ) -> ( ( a |g b ) = ( u |g v ) <-> ( 1o = 1o /\ <. a , b >. = <. u , v >. ) ) ) |
| 25 |
|
vex |
|- a e. _V |
| 26 |
|
vex |
|- b e. _V |
| 27 |
25 26
|
opth |
|- ( <. a , b >. = <. u , v >. <-> ( a = u /\ b = v ) ) |
| 28 |
|
eleq1w |
|- ( u = a -> ( u e. ( Fmla ` suc N ) <-> a e. ( Fmla ` suc N ) ) ) |
| 29 |
28
|
equcoms |
|- ( a = u -> ( u e. ( Fmla ` suc N ) <-> a e. ( Fmla ` suc N ) ) ) |
| 30 |
|
eleq1w |
|- ( v = b -> ( v e. ( Fmla ` suc N ) <-> b e. ( Fmla ` suc N ) ) ) |
| 31 |
30
|
equcoms |
|- ( b = v -> ( v e. ( Fmla ` suc N ) <-> b e. ( Fmla ` suc N ) ) ) |
| 32 |
29 31
|
bi2anan9 |
|- ( ( a = u /\ b = v ) -> ( ( u e. ( Fmla ` suc N ) /\ v e. ( Fmla ` suc N ) ) <-> ( a e. ( Fmla ` suc N ) /\ b e. ( Fmla ` suc N ) ) ) ) |
| 33 |
32 11
|
biimtrdi |
|- ( ( a = u /\ b = v ) -> ( ( u e. ( Fmla ` suc N ) /\ v e. ( Fmla ` suc N ) ) -> ( N e. _om -> ( a e. ( Fmla ` suc suc N ) /\ b e. ( Fmla ` suc suc N ) ) ) ) ) |
| 34 |
27 33
|
sylbi |
|- ( <. a , b >. = <. u , v >. -> ( ( u e. ( Fmla ` suc N ) /\ v e. ( Fmla ` suc N ) ) -> ( N e. _om -> ( a e. ( Fmla ` suc suc N ) /\ b e. ( Fmla ` suc suc N ) ) ) ) ) |
| 35 |
34
|
adantl |
|- ( ( 1o = 1o /\ <. a , b >. = <. u , v >. ) -> ( ( u e. ( Fmla ` suc N ) /\ v e. ( Fmla ` suc N ) ) -> ( N e. _om -> ( a e. ( Fmla ` suc suc N ) /\ b e. ( Fmla ` suc suc N ) ) ) ) ) |
| 36 |
35
|
com13 |
|- ( N e. _om -> ( ( u e. ( Fmla ` suc N ) /\ v e. ( Fmla ` suc N ) ) -> ( ( 1o = 1o /\ <. a , b >. = <. u , v >. ) -> ( a e. ( Fmla ` suc suc N ) /\ b e. ( Fmla ` suc suc N ) ) ) ) ) |
| 37 |
36
|
impl |
|- ( ( ( N e. _om /\ u e. ( Fmla ` suc N ) ) /\ v e. ( Fmla ` suc N ) ) -> ( ( 1o = 1o /\ <. a , b >. = <. u , v >. ) -> ( a e. ( Fmla ` suc suc N ) /\ b e. ( Fmla ` suc suc N ) ) ) ) |
| 38 |
24 37
|
sylbid |
|- ( ( ( N e. _om /\ u e. ( Fmla ` suc N ) ) /\ v e. ( Fmla ` suc N ) ) -> ( ( a |g b ) = ( u |g v ) -> ( a e. ( Fmla ` suc suc N ) /\ b e. ( Fmla ` suc suc N ) ) ) ) |
| 39 |
38
|
rexlimdva |
|- ( ( N e. _om /\ u e. ( Fmla ` suc N ) ) -> ( E. v e. ( Fmla ` suc N ) ( a |g b ) = ( u |g v ) -> ( a e. ( Fmla ` suc suc N ) /\ b e. ( Fmla ` suc suc N ) ) ) ) |
| 40 |
|
gonanegoal |
|- ( a |g b ) =/= A.g i u |
| 41 |
|
eqneqall |
|- ( ( a |g b ) = A.g i u -> ( ( a |g b ) =/= A.g i u -> ( a e. ( Fmla ` suc suc N ) /\ b e. ( Fmla ` suc suc N ) ) ) ) |
| 42 |
40 41
|
mpi |
|- ( ( a |g b ) = A.g i u -> ( a e. ( Fmla ` suc suc N ) /\ b e. ( Fmla ` suc suc N ) ) ) |
| 43 |
42
|
a1i |
|- ( ( ( N e. _om /\ u e. ( Fmla ` suc N ) ) /\ i e. _om ) -> ( ( a |g b ) = A.g i u -> ( a e. ( Fmla ` suc suc N ) /\ b e. ( Fmla ` suc suc N ) ) ) ) |
| 44 |
43
|
rexlimdva |
|- ( ( N e. _om /\ u e. ( Fmla ` suc N ) ) -> ( E. i e. _om ( a |g b ) = A.g i u -> ( a e. ( Fmla ` suc suc N ) /\ b e. ( Fmla ` suc suc N ) ) ) ) |
| 45 |
39 44
|
jaod |
|- ( ( N e. _om /\ u e. ( Fmla ` suc N ) ) -> ( ( E. v e. ( Fmla ` suc N ) ( a |g b ) = ( u |g v ) \/ E. i e. _om ( a |g b ) = A.g i u ) -> ( a e. ( Fmla ` suc suc N ) /\ b e. ( Fmla ` suc suc N ) ) ) ) |
| 46 |
45
|
rexlimdva |
|- ( N e. _om -> ( E. u e. ( Fmla ` suc N ) ( E. v e. ( Fmla ` suc N ) ( a |g b ) = ( u |g v ) \/ E. i e. _om ( a |g b ) = A.g i u ) -> ( a e. ( Fmla ` suc suc N ) /\ b e. ( Fmla ` suc suc N ) ) ) ) |
| 47 |
46
|
adantr |
|- ( ( N e. _om /\ ( ( a |g b ) e. ( Fmla ` suc N ) -> ( a e. ( Fmla ` suc N ) /\ b e. ( Fmla ` suc N ) ) ) ) -> ( E. u e. ( Fmla ` suc N ) ( E. v e. ( Fmla ` suc N ) ( a |g b ) = ( u |g v ) \/ E. i e. _om ( a |g b ) = A.g i u ) -> ( a e. ( Fmla ` suc suc N ) /\ b e. ( Fmla ` suc suc N ) ) ) ) |
| 48 |
14 47
|
jaod |
|- ( ( N e. _om /\ ( ( a |g b ) e. ( Fmla ` suc N ) -> ( a e. ( Fmla ` suc N ) /\ b e. ( Fmla ` suc N ) ) ) ) -> ( ( ( a |g b ) e. ( Fmla ` suc N ) \/ E. u e. ( Fmla ` suc N ) ( E. v e. ( Fmla ` suc N ) ( a |g b ) = ( u |g v ) \/ E. i e. _om ( a |g b ) = A.g i u ) ) -> ( a e. ( Fmla ` suc suc N ) /\ b e. ( Fmla ` suc suc N ) ) ) ) |
| 49 |
5 48
|
sylbid |
|- ( ( N e. _om /\ ( ( a |g b ) e. ( Fmla ` suc N ) -> ( a e. ( Fmla ` suc N ) /\ b e. ( Fmla ` suc N ) ) ) ) -> ( ( a |g b ) e. ( Fmla ` suc suc N ) -> ( a e. ( Fmla ` suc suc N ) /\ b e. ( Fmla ` suc suc N ) ) ) ) |
| 50 |
49
|
ex |
|- ( N e. _om -> ( ( ( a |g b ) e. ( Fmla ` suc N ) -> ( a e. ( Fmla ` suc N ) /\ b e. ( Fmla ` suc N ) ) ) -> ( ( a |g b ) e. ( Fmla ` suc suc N ) -> ( a e. ( Fmla ` suc suc N ) /\ b e. ( Fmla ` suc suc N ) ) ) ) ) |