Description: Lemma for gonar (induction step). (Contributed by AV, 21-Oct-2023)
Ref | Expression | ||
---|---|---|---|
Assertion | gonarlem | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | peano2 | |
|
2 | ovexd | |
|
3 | isfmlasuc | |
|
4 | 1 2 3 | syl2anc | |
5 | 4 | adantr | |
6 | fmlasssuc | |
|
7 | 1 6 | syl | |
8 | 7 | sseld | |
9 | 7 | sseld | |
10 | 8 9 | anim12d | |
11 | 10 | com12 | |
12 | 11 | imim2i | |
13 | 12 | com23 | |
14 | 13 | impcom | |
15 | gonafv | |
|
16 | 15 | el2v | |
17 | 16 | a1i | |
18 | gonafv | |
|
19 | 17 18 | eqeq12d | |
20 | 1oex | |
|
21 | opex | |
|
22 | 20 21 | opth | |
23 | 19 22 | bitrdi | |
24 | 23 | adantll | |
25 | vex | |
|
26 | vex | |
|
27 | 25 26 | opth | |
28 | eleq1w | |
|
29 | 28 | equcoms | |
30 | eleq1w | |
|
31 | 30 | equcoms | |
32 | 29 31 | bi2anan9 | |
33 | 32 11 | syl6bi | |
34 | 27 33 | sylbi | |
35 | 34 | adantl | |
36 | 35 | com13 | |
37 | 36 | impl | |
38 | 24 37 | sylbid | |
39 | 38 | rexlimdva | |
40 | gonanegoal | |
|
41 | eqneqall | |
|
42 | 40 41 | mpi | |
43 | 42 | a1i | |
44 | 43 | rexlimdva | |
45 | 39 44 | jaod | |
46 | 45 | rexlimdva | |
47 | 46 | adantr | |
48 | 14 47 | jaod | |
49 | 5 48 | sylbid | |
50 | 49 | ex | |