| Step | Hyp | Ref | Expression | 
						
							| 1 |  | peano2 |  | 
						
							| 2 |  | ovexd |  | 
						
							| 3 |  | isfmlasuc |  | 
						
							| 4 | 1 2 3 | syl2anc |  | 
						
							| 5 | 4 | adantr |  | 
						
							| 6 |  | fmlasssuc |  | 
						
							| 7 | 1 6 | syl |  | 
						
							| 8 | 7 | sseld |  | 
						
							| 9 | 7 | sseld |  | 
						
							| 10 | 8 9 | anim12d |  | 
						
							| 11 | 10 | com12 |  | 
						
							| 12 | 11 | imim2i |  | 
						
							| 13 | 12 | com23 |  | 
						
							| 14 | 13 | impcom |  | 
						
							| 15 |  | gonafv |  | 
						
							| 16 | 15 | el2v |  | 
						
							| 17 | 16 | a1i |  | 
						
							| 18 |  | gonafv |  | 
						
							| 19 | 17 18 | eqeq12d |  | 
						
							| 20 |  | 1oex |  | 
						
							| 21 |  | opex |  | 
						
							| 22 | 20 21 | opth |  | 
						
							| 23 | 19 22 | bitrdi |  | 
						
							| 24 | 23 | adantll |  | 
						
							| 25 |  | vex |  | 
						
							| 26 |  | vex |  | 
						
							| 27 | 25 26 | opth |  | 
						
							| 28 |  | eleq1w |  | 
						
							| 29 | 28 | equcoms |  | 
						
							| 30 |  | eleq1w |  | 
						
							| 31 | 30 | equcoms |  | 
						
							| 32 | 29 31 | bi2anan9 |  | 
						
							| 33 | 32 11 | biimtrdi |  | 
						
							| 34 | 27 33 | sylbi |  | 
						
							| 35 | 34 | adantl |  | 
						
							| 36 | 35 | com13 |  | 
						
							| 37 | 36 | impl |  | 
						
							| 38 | 24 37 | sylbid |  | 
						
							| 39 | 38 | rexlimdva |  | 
						
							| 40 |  | gonanegoal |  | 
						
							| 41 |  | eqneqall |  | 
						
							| 42 | 40 41 | mpi |  | 
						
							| 43 | 42 | a1i |  | 
						
							| 44 | 43 | rexlimdva |  | 
						
							| 45 | 39 44 | jaod |  | 
						
							| 46 | 45 | rexlimdva |  | 
						
							| 47 | 46 | adantr |  | 
						
							| 48 | 14 47 | jaod |  | 
						
							| 49 | 5 48 | sylbid |  | 
						
							| 50 | 49 | ex |  |