| Step | Hyp | Ref | Expression | 
						
							| 1 |  | peano2 | ⊢ ( 𝑁  ∈  ω  →  suc  𝑁  ∈  ω ) | 
						
							| 2 |  | ovexd | ⊢ ( 𝑁  ∈  ω  →  ( 𝑎 ⊼𝑔 𝑏 )  ∈  V ) | 
						
							| 3 |  | isfmlasuc | ⊢ ( ( suc  𝑁  ∈  ω  ∧  ( 𝑎 ⊼𝑔 𝑏 )  ∈  V )  →  ( ( 𝑎 ⊼𝑔 𝑏 )  ∈  ( Fmla ‘ suc  suc  𝑁 )  ↔  ( ( 𝑎 ⊼𝑔 𝑏 )  ∈  ( Fmla ‘ suc  𝑁 )  ∨  ∃ 𝑢  ∈  ( Fmla ‘ suc  𝑁 ) ( ∃ 𝑣  ∈  ( Fmla ‘ suc  𝑁 ) ( 𝑎 ⊼𝑔 𝑏 )  =  ( 𝑢 ⊼𝑔 𝑣 )  ∨  ∃ 𝑖  ∈  ω ( 𝑎 ⊼𝑔 𝑏 )  =  ∀𝑔 𝑖 𝑢 ) ) ) ) | 
						
							| 4 | 1 2 3 | syl2anc | ⊢ ( 𝑁  ∈  ω  →  ( ( 𝑎 ⊼𝑔 𝑏 )  ∈  ( Fmla ‘ suc  suc  𝑁 )  ↔  ( ( 𝑎 ⊼𝑔 𝑏 )  ∈  ( Fmla ‘ suc  𝑁 )  ∨  ∃ 𝑢  ∈  ( Fmla ‘ suc  𝑁 ) ( ∃ 𝑣  ∈  ( Fmla ‘ suc  𝑁 ) ( 𝑎 ⊼𝑔 𝑏 )  =  ( 𝑢 ⊼𝑔 𝑣 )  ∨  ∃ 𝑖  ∈  ω ( 𝑎 ⊼𝑔 𝑏 )  =  ∀𝑔 𝑖 𝑢 ) ) ) ) | 
						
							| 5 | 4 | adantr | ⊢ ( ( 𝑁  ∈  ω  ∧  ( ( 𝑎 ⊼𝑔 𝑏 )  ∈  ( Fmla ‘ suc  𝑁 )  →  ( 𝑎  ∈  ( Fmla ‘ suc  𝑁 )  ∧  𝑏  ∈  ( Fmla ‘ suc  𝑁 ) ) ) )  →  ( ( 𝑎 ⊼𝑔 𝑏 )  ∈  ( Fmla ‘ suc  suc  𝑁 )  ↔  ( ( 𝑎 ⊼𝑔 𝑏 )  ∈  ( Fmla ‘ suc  𝑁 )  ∨  ∃ 𝑢  ∈  ( Fmla ‘ suc  𝑁 ) ( ∃ 𝑣  ∈  ( Fmla ‘ suc  𝑁 ) ( 𝑎 ⊼𝑔 𝑏 )  =  ( 𝑢 ⊼𝑔 𝑣 )  ∨  ∃ 𝑖  ∈  ω ( 𝑎 ⊼𝑔 𝑏 )  =  ∀𝑔 𝑖 𝑢 ) ) ) ) | 
						
							| 6 |  | fmlasssuc | ⊢ ( suc  𝑁  ∈  ω  →  ( Fmla ‘ suc  𝑁 )  ⊆  ( Fmla ‘ suc  suc  𝑁 ) ) | 
						
							| 7 | 1 6 | syl | ⊢ ( 𝑁  ∈  ω  →  ( Fmla ‘ suc  𝑁 )  ⊆  ( Fmla ‘ suc  suc  𝑁 ) ) | 
						
							| 8 | 7 | sseld | ⊢ ( 𝑁  ∈  ω  →  ( 𝑎  ∈  ( Fmla ‘ suc  𝑁 )  →  𝑎  ∈  ( Fmla ‘ suc  suc  𝑁 ) ) ) | 
						
							| 9 | 7 | sseld | ⊢ ( 𝑁  ∈  ω  →  ( 𝑏  ∈  ( Fmla ‘ suc  𝑁 )  →  𝑏  ∈  ( Fmla ‘ suc  suc  𝑁 ) ) ) | 
						
							| 10 | 8 9 | anim12d | ⊢ ( 𝑁  ∈  ω  →  ( ( 𝑎  ∈  ( Fmla ‘ suc  𝑁 )  ∧  𝑏  ∈  ( Fmla ‘ suc  𝑁 ) )  →  ( 𝑎  ∈  ( Fmla ‘ suc  suc  𝑁 )  ∧  𝑏  ∈  ( Fmla ‘ suc  suc  𝑁 ) ) ) ) | 
						
							| 11 | 10 | com12 | ⊢ ( ( 𝑎  ∈  ( Fmla ‘ suc  𝑁 )  ∧  𝑏  ∈  ( Fmla ‘ suc  𝑁 ) )  →  ( 𝑁  ∈  ω  →  ( 𝑎  ∈  ( Fmla ‘ suc  suc  𝑁 )  ∧  𝑏  ∈  ( Fmla ‘ suc  suc  𝑁 ) ) ) ) | 
						
							| 12 | 11 | imim2i | ⊢ ( ( ( 𝑎 ⊼𝑔 𝑏 )  ∈  ( Fmla ‘ suc  𝑁 )  →  ( 𝑎  ∈  ( Fmla ‘ suc  𝑁 )  ∧  𝑏  ∈  ( Fmla ‘ suc  𝑁 ) ) )  →  ( ( 𝑎 ⊼𝑔 𝑏 )  ∈  ( Fmla ‘ suc  𝑁 )  →  ( 𝑁  ∈  ω  →  ( 𝑎  ∈  ( Fmla ‘ suc  suc  𝑁 )  ∧  𝑏  ∈  ( Fmla ‘ suc  suc  𝑁 ) ) ) ) ) | 
						
							| 13 | 12 | com23 | ⊢ ( ( ( 𝑎 ⊼𝑔 𝑏 )  ∈  ( Fmla ‘ suc  𝑁 )  →  ( 𝑎  ∈  ( Fmla ‘ suc  𝑁 )  ∧  𝑏  ∈  ( Fmla ‘ suc  𝑁 ) ) )  →  ( 𝑁  ∈  ω  →  ( ( 𝑎 ⊼𝑔 𝑏 )  ∈  ( Fmla ‘ suc  𝑁 )  →  ( 𝑎  ∈  ( Fmla ‘ suc  suc  𝑁 )  ∧  𝑏  ∈  ( Fmla ‘ suc  suc  𝑁 ) ) ) ) ) | 
						
							| 14 | 13 | impcom | ⊢ ( ( 𝑁  ∈  ω  ∧  ( ( 𝑎 ⊼𝑔 𝑏 )  ∈  ( Fmla ‘ suc  𝑁 )  →  ( 𝑎  ∈  ( Fmla ‘ suc  𝑁 )  ∧  𝑏  ∈  ( Fmla ‘ suc  𝑁 ) ) ) )  →  ( ( 𝑎 ⊼𝑔 𝑏 )  ∈  ( Fmla ‘ suc  𝑁 )  →  ( 𝑎  ∈  ( Fmla ‘ suc  suc  𝑁 )  ∧  𝑏  ∈  ( Fmla ‘ suc  suc  𝑁 ) ) ) ) | 
						
							| 15 |  | gonafv | ⊢ ( ( 𝑎  ∈  V  ∧  𝑏  ∈  V )  →  ( 𝑎 ⊼𝑔 𝑏 )  =  〈 1o ,  〈 𝑎 ,  𝑏 〉 〉 ) | 
						
							| 16 | 15 | el2v | ⊢ ( 𝑎 ⊼𝑔 𝑏 )  =  〈 1o ,  〈 𝑎 ,  𝑏 〉 〉 | 
						
							| 17 | 16 | a1i | ⊢ ( ( 𝑢  ∈  ( Fmla ‘ suc  𝑁 )  ∧  𝑣  ∈  ( Fmla ‘ suc  𝑁 ) )  →  ( 𝑎 ⊼𝑔 𝑏 )  =  〈 1o ,  〈 𝑎 ,  𝑏 〉 〉 ) | 
						
							| 18 |  | gonafv | ⊢ ( ( 𝑢  ∈  ( Fmla ‘ suc  𝑁 )  ∧  𝑣  ∈  ( Fmla ‘ suc  𝑁 ) )  →  ( 𝑢 ⊼𝑔 𝑣 )  =  〈 1o ,  〈 𝑢 ,  𝑣 〉 〉 ) | 
						
							| 19 | 17 18 | eqeq12d | ⊢ ( ( 𝑢  ∈  ( Fmla ‘ suc  𝑁 )  ∧  𝑣  ∈  ( Fmla ‘ suc  𝑁 ) )  →  ( ( 𝑎 ⊼𝑔 𝑏 )  =  ( 𝑢 ⊼𝑔 𝑣 )  ↔  〈 1o ,  〈 𝑎 ,  𝑏 〉 〉  =  〈 1o ,  〈 𝑢 ,  𝑣 〉 〉 ) ) | 
						
							| 20 |  | 1oex | ⊢ 1o  ∈  V | 
						
							| 21 |  | opex | ⊢ 〈 𝑎 ,  𝑏 〉  ∈  V | 
						
							| 22 | 20 21 | opth | ⊢ ( 〈 1o ,  〈 𝑎 ,  𝑏 〉 〉  =  〈 1o ,  〈 𝑢 ,  𝑣 〉 〉  ↔  ( 1o  =  1o  ∧  〈 𝑎 ,  𝑏 〉  =  〈 𝑢 ,  𝑣 〉 ) ) | 
						
							| 23 | 19 22 | bitrdi | ⊢ ( ( 𝑢  ∈  ( Fmla ‘ suc  𝑁 )  ∧  𝑣  ∈  ( Fmla ‘ suc  𝑁 ) )  →  ( ( 𝑎 ⊼𝑔 𝑏 )  =  ( 𝑢 ⊼𝑔 𝑣 )  ↔  ( 1o  =  1o  ∧  〈 𝑎 ,  𝑏 〉  =  〈 𝑢 ,  𝑣 〉 ) ) ) | 
						
							| 24 | 23 | adantll | ⊢ ( ( ( 𝑁  ∈  ω  ∧  𝑢  ∈  ( Fmla ‘ suc  𝑁 ) )  ∧  𝑣  ∈  ( Fmla ‘ suc  𝑁 ) )  →  ( ( 𝑎 ⊼𝑔 𝑏 )  =  ( 𝑢 ⊼𝑔 𝑣 )  ↔  ( 1o  =  1o  ∧  〈 𝑎 ,  𝑏 〉  =  〈 𝑢 ,  𝑣 〉 ) ) ) | 
						
							| 25 |  | vex | ⊢ 𝑎  ∈  V | 
						
							| 26 |  | vex | ⊢ 𝑏  ∈  V | 
						
							| 27 | 25 26 | opth | ⊢ ( 〈 𝑎 ,  𝑏 〉  =  〈 𝑢 ,  𝑣 〉  ↔  ( 𝑎  =  𝑢  ∧  𝑏  =  𝑣 ) ) | 
						
							| 28 |  | eleq1w | ⊢ ( 𝑢  =  𝑎  →  ( 𝑢  ∈  ( Fmla ‘ suc  𝑁 )  ↔  𝑎  ∈  ( Fmla ‘ suc  𝑁 ) ) ) | 
						
							| 29 | 28 | equcoms | ⊢ ( 𝑎  =  𝑢  →  ( 𝑢  ∈  ( Fmla ‘ suc  𝑁 )  ↔  𝑎  ∈  ( Fmla ‘ suc  𝑁 ) ) ) | 
						
							| 30 |  | eleq1w | ⊢ ( 𝑣  =  𝑏  →  ( 𝑣  ∈  ( Fmla ‘ suc  𝑁 )  ↔  𝑏  ∈  ( Fmla ‘ suc  𝑁 ) ) ) | 
						
							| 31 | 30 | equcoms | ⊢ ( 𝑏  =  𝑣  →  ( 𝑣  ∈  ( Fmla ‘ suc  𝑁 )  ↔  𝑏  ∈  ( Fmla ‘ suc  𝑁 ) ) ) | 
						
							| 32 | 29 31 | bi2anan9 | ⊢ ( ( 𝑎  =  𝑢  ∧  𝑏  =  𝑣 )  →  ( ( 𝑢  ∈  ( Fmla ‘ suc  𝑁 )  ∧  𝑣  ∈  ( Fmla ‘ suc  𝑁 ) )  ↔  ( 𝑎  ∈  ( Fmla ‘ suc  𝑁 )  ∧  𝑏  ∈  ( Fmla ‘ suc  𝑁 ) ) ) ) | 
						
							| 33 | 32 11 | biimtrdi | ⊢ ( ( 𝑎  =  𝑢  ∧  𝑏  =  𝑣 )  →  ( ( 𝑢  ∈  ( Fmla ‘ suc  𝑁 )  ∧  𝑣  ∈  ( Fmla ‘ suc  𝑁 ) )  →  ( 𝑁  ∈  ω  →  ( 𝑎  ∈  ( Fmla ‘ suc  suc  𝑁 )  ∧  𝑏  ∈  ( Fmla ‘ suc  suc  𝑁 ) ) ) ) ) | 
						
							| 34 | 27 33 | sylbi | ⊢ ( 〈 𝑎 ,  𝑏 〉  =  〈 𝑢 ,  𝑣 〉  →  ( ( 𝑢  ∈  ( Fmla ‘ suc  𝑁 )  ∧  𝑣  ∈  ( Fmla ‘ suc  𝑁 ) )  →  ( 𝑁  ∈  ω  →  ( 𝑎  ∈  ( Fmla ‘ suc  suc  𝑁 )  ∧  𝑏  ∈  ( Fmla ‘ suc  suc  𝑁 ) ) ) ) ) | 
						
							| 35 | 34 | adantl | ⊢ ( ( 1o  =  1o  ∧  〈 𝑎 ,  𝑏 〉  =  〈 𝑢 ,  𝑣 〉 )  →  ( ( 𝑢  ∈  ( Fmla ‘ suc  𝑁 )  ∧  𝑣  ∈  ( Fmla ‘ suc  𝑁 ) )  →  ( 𝑁  ∈  ω  →  ( 𝑎  ∈  ( Fmla ‘ suc  suc  𝑁 )  ∧  𝑏  ∈  ( Fmla ‘ suc  suc  𝑁 ) ) ) ) ) | 
						
							| 36 | 35 | com13 | ⊢ ( 𝑁  ∈  ω  →  ( ( 𝑢  ∈  ( Fmla ‘ suc  𝑁 )  ∧  𝑣  ∈  ( Fmla ‘ suc  𝑁 ) )  →  ( ( 1o  =  1o  ∧  〈 𝑎 ,  𝑏 〉  =  〈 𝑢 ,  𝑣 〉 )  →  ( 𝑎  ∈  ( Fmla ‘ suc  suc  𝑁 )  ∧  𝑏  ∈  ( Fmla ‘ suc  suc  𝑁 ) ) ) ) ) | 
						
							| 37 | 36 | impl | ⊢ ( ( ( 𝑁  ∈  ω  ∧  𝑢  ∈  ( Fmla ‘ suc  𝑁 ) )  ∧  𝑣  ∈  ( Fmla ‘ suc  𝑁 ) )  →  ( ( 1o  =  1o  ∧  〈 𝑎 ,  𝑏 〉  =  〈 𝑢 ,  𝑣 〉 )  →  ( 𝑎  ∈  ( Fmla ‘ suc  suc  𝑁 )  ∧  𝑏  ∈  ( Fmla ‘ suc  suc  𝑁 ) ) ) ) | 
						
							| 38 | 24 37 | sylbid | ⊢ ( ( ( 𝑁  ∈  ω  ∧  𝑢  ∈  ( Fmla ‘ suc  𝑁 ) )  ∧  𝑣  ∈  ( Fmla ‘ suc  𝑁 ) )  →  ( ( 𝑎 ⊼𝑔 𝑏 )  =  ( 𝑢 ⊼𝑔 𝑣 )  →  ( 𝑎  ∈  ( Fmla ‘ suc  suc  𝑁 )  ∧  𝑏  ∈  ( Fmla ‘ suc  suc  𝑁 ) ) ) ) | 
						
							| 39 | 38 | rexlimdva | ⊢ ( ( 𝑁  ∈  ω  ∧  𝑢  ∈  ( Fmla ‘ suc  𝑁 ) )  →  ( ∃ 𝑣  ∈  ( Fmla ‘ suc  𝑁 ) ( 𝑎 ⊼𝑔 𝑏 )  =  ( 𝑢 ⊼𝑔 𝑣 )  →  ( 𝑎  ∈  ( Fmla ‘ suc  suc  𝑁 )  ∧  𝑏  ∈  ( Fmla ‘ suc  suc  𝑁 ) ) ) ) | 
						
							| 40 |  | gonanegoal | ⊢ ( 𝑎 ⊼𝑔 𝑏 )  ≠  ∀𝑔 𝑖 𝑢 | 
						
							| 41 |  | eqneqall | ⊢ ( ( 𝑎 ⊼𝑔 𝑏 )  =  ∀𝑔 𝑖 𝑢  →  ( ( 𝑎 ⊼𝑔 𝑏 )  ≠  ∀𝑔 𝑖 𝑢  →  ( 𝑎  ∈  ( Fmla ‘ suc  suc  𝑁 )  ∧  𝑏  ∈  ( Fmla ‘ suc  suc  𝑁 ) ) ) ) | 
						
							| 42 | 40 41 | mpi | ⊢ ( ( 𝑎 ⊼𝑔 𝑏 )  =  ∀𝑔 𝑖 𝑢  →  ( 𝑎  ∈  ( Fmla ‘ suc  suc  𝑁 )  ∧  𝑏  ∈  ( Fmla ‘ suc  suc  𝑁 ) ) ) | 
						
							| 43 | 42 | a1i | ⊢ ( ( ( 𝑁  ∈  ω  ∧  𝑢  ∈  ( Fmla ‘ suc  𝑁 ) )  ∧  𝑖  ∈  ω )  →  ( ( 𝑎 ⊼𝑔 𝑏 )  =  ∀𝑔 𝑖 𝑢  →  ( 𝑎  ∈  ( Fmla ‘ suc  suc  𝑁 )  ∧  𝑏  ∈  ( Fmla ‘ suc  suc  𝑁 ) ) ) ) | 
						
							| 44 | 43 | rexlimdva | ⊢ ( ( 𝑁  ∈  ω  ∧  𝑢  ∈  ( Fmla ‘ suc  𝑁 ) )  →  ( ∃ 𝑖  ∈  ω ( 𝑎 ⊼𝑔 𝑏 )  =  ∀𝑔 𝑖 𝑢  →  ( 𝑎  ∈  ( Fmla ‘ suc  suc  𝑁 )  ∧  𝑏  ∈  ( Fmla ‘ suc  suc  𝑁 ) ) ) ) | 
						
							| 45 | 39 44 | jaod | ⊢ ( ( 𝑁  ∈  ω  ∧  𝑢  ∈  ( Fmla ‘ suc  𝑁 ) )  →  ( ( ∃ 𝑣  ∈  ( Fmla ‘ suc  𝑁 ) ( 𝑎 ⊼𝑔 𝑏 )  =  ( 𝑢 ⊼𝑔 𝑣 )  ∨  ∃ 𝑖  ∈  ω ( 𝑎 ⊼𝑔 𝑏 )  =  ∀𝑔 𝑖 𝑢 )  →  ( 𝑎  ∈  ( Fmla ‘ suc  suc  𝑁 )  ∧  𝑏  ∈  ( Fmla ‘ suc  suc  𝑁 ) ) ) ) | 
						
							| 46 | 45 | rexlimdva | ⊢ ( 𝑁  ∈  ω  →  ( ∃ 𝑢  ∈  ( Fmla ‘ suc  𝑁 ) ( ∃ 𝑣  ∈  ( Fmla ‘ suc  𝑁 ) ( 𝑎 ⊼𝑔 𝑏 )  =  ( 𝑢 ⊼𝑔 𝑣 )  ∨  ∃ 𝑖  ∈  ω ( 𝑎 ⊼𝑔 𝑏 )  =  ∀𝑔 𝑖 𝑢 )  →  ( 𝑎  ∈  ( Fmla ‘ suc  suc  𝑁 )  ∧  𝑏  ∈  ( Fmla ‘ suc  suc  𝑁 ) ) ) ) | 
						
							| 47 | 46 | adantr | ⊢ ( ( 𝑁  ∈  ω  ∧  ( ( 𝑎 ⊼𝑔 𝑏 )  ∈  ( Fmla ‘ suc  𝑁 )  →  ( 𝑎  ∈  ( Fmla ‘ suc  𝑁 )  ∧  𝑏  ∈  ( Fmla ‘ suc  𝑁 ) ) ) )  →  ( ∃ 𝑢  ∈  ( Fmla ‘ suc  𝑁 ) ( ∃ 𝑣  ∈  ( Fmla ‘ suc  𝑁 ) ( 𝑎 ⊼𝑔 𝑏 )  =  ( 𝑢 ⊼𝑔 𝑣 )  ∨  ∃ 𝑖  ∈  ω ( 𝑎 ⊼𝑔 𝑏 )  =  ∀𝑔 𝑖 𝑢 )  →  ( 𝑎  ∈  ( Fmla ‘ suc  suc  𝑁 )  ∧  𝑏  ∈  ( Fmla ‘ suc  suc  𝑁 ) ) ) ) | 
						
							| 48 | 14 47 | jaod | ⊢ ( ( 𝑁  ∈  ω  ∧  ( ( 𝑎 ⊼𝑔 𝑏 )  ∈  ( Fmla ‘ suc  𝑁 )  →  ( 𝑎  ∈  ( Fmla ‘ suc  𝑁 )  ∧  𝑏  ∈  ( Fmla ‘ suc  𝑁 ) ) ) )  →  ( ( ( 𝑎 ⊼𝑔 𝑏 )  ∈  ( Fmla ‘ suc  𝑁 )  ∨  ∃ 𝑢  ∈  ( Fmla ‘ suc  𝑁 ) ( ∃ 𝑣  ∈  ( Fmla ‘ suc  𝑁 ) ( 𝑎 ⊼𝑔 𝑏 )  =  ( 𝑢 ⊼𝑔 𝑣 )  ∨  ∃ 𝑖  ∈  ω ( 𝑎 ⊼𝑔 𝑏 )  =  ∀𝑔 𝑖 𝑢 ) )  →  ( 𝑎  ∈  ( Fmla ‘ suc  suc  𝑁 )  ∧  𝑏  ∈  ( Fmla ‘ suc  suc  𝑁 ) ) ) ) | 
						
							| 49 | 5 48 | sylbid | ⊢ ( ( 𝑁  ∈  ω  ∧  ( ( 𝑎 ⊼𝑔 𝑏 )  ∈  ( Fmla ‘ suc  𝑁 )  →  ( 𝑎  ∈  ( Fmla ‘ suc  𝑁 )  ∧  𝑏  ∈  ( Fmla ‘ suc  𝑁 ) ) ) )  →  ( ( 𝑎 ⊼𝑔 𝑏 )  ∈  ( Fmla ‘ suc  suc  𝑁 )  →  ( 𝑎  ∈  ( Fmla ‘ suc  suc  𝑁 )  ∧  𝑏  ∈  ( Fmla ‘ suc  suc  𝑁 ) ) ) ) | 
						
							| 50 | 49 | ex | ⊢ ( 𝑁  ∈  ω  →  ( ( ( 𝑎 ⊼𝑔 𝑏 )  ∈  ( Fmla ‘ suc  𝑁 )  →  ( 𝑎  ∈  ( Fmla ‘ suc  𝑁 )  ∧  𝑏  ∈  ( Fmla ‘ suc  𝑁 ) ) )  →  ( ( 𝑎 ⊼𝑔 𝑏 )  ∈  ( Fmla ‘ suc  suc  𝑁 )  →  ( 𝑎  ∈  ( Fmla ‘ suc  suc  𝑁 )  ∧  𝑏  ∈  ( Fmla ‘ suc  suc  𝑁 ) ) ) ) ) |