Metamath Proof Explorer


Theorem isfmlasuc

Description: The characterization of a Godel formula of height at least 1. (Contributed by AV, 14-Oct-2023)

Ref Expression
Assertion isfmlasuc NωFVFFmlasucNFFmlaNuFmlaNvFmlaNF=u𝑔viωF=𝑔iu

Proof

Step Hyp Ref Expression
1 fmlasuc NωFmlasucN=FmlaNf|uFmlaNvFmlaNf=u𝑔viωf=𝑔iu
2 1 adantr NωFVFmlasucN=FmlaNf|uFmlaNvFmlaNf=u𝑔viωf=𝑔iu
3 2 eleq2d NωFVFFmlasucNFFmlaNf|uFmlaNvFmlaNf=u𝑔viωf=𝑔iu
4 elun FFmlaNf|uFmlaNvFmlaNf=u𝑔viωf=𝑔iuFFmlaNFf|uFmlaNvFmlaNf=u𝑔viωf=𝑔iu
5 4 a1i NωFVFFmlaNf|uFmlaNvFmlaNf=u𝑔viωf=𝑔iuFFmlaNFf|uFmlaNvFmlaNf=u𝑔viωf=𝑔iu
6 eqeq1 f=Ff=u𝑔vF=u𝑔v
7 6 rexbidv f=FvFmlaNf=u𝑔vvFmlaNF=u𝑔v
8 eqeq1 f=Ff=𝑔iuF=𝑔iu
9 8 rexbidv f=Fiωf=𝑔iuiωF=𝑔iu
10 7 9 orbi12d f=FvFmlaNf=u𝑔viωf=𝑔iuvFmlaNF=u𝑔viωF=𝑔iu
11 10 rexbidv f=FuFmlaNvFmlaNf=u𝑔viωf=𝑔iuuFmlaNvFmlaNF=u𝑔viωF=𝑔iu
12 11 elabg FVFf|uFmlaNvFmlaNf=u𝑔viωf=𝑔iuuFmlaNvFmlaNF=u𝑔viωF=𝑔iu
13 12 adantl NωFVFf|uFmlaNvFmlaNf=u𝑔viωf=𝑔iuuFmlaNvFmlaNF=u𝑔viωF=𝑔iu
14 13 orbi2d NωFVFFmlaNFf|uFmlaNvFmlaNf=u𝑔viωf=𝑔iuFFmlaNuFmlaNvFmlaNF=u𝑔viωF=𝑔iu
15 3 5 14 3bitrd NωFVFFmlasucNFFmlaNuFmlaNvFmlaNF=u𝑔viωF=𝑔iu