| Step |
Hyp |
Ref |
Expression |
| 1 |
|
fmlasuc0 |
|
| 2 |
|
eqid |
|
| 3 |
2
|
satf0op |
|
| 4 |
|
fveq2 |
|
| 5 |
4
|
oveq2d |
|
| 6 |
5
|
eqeq2d |
|
| 7 |
6
|
cbvrexvw |
|
| 8 |
7
|
orbi1i |
|
| 9 |
|
fmlafvel |
|
| 10 |
9
|
biimprd |
|
| 11 |
10
|
adantld |
|
| 12 |
11
|
imp |
|
| 13 |
|
vex |
|
| 14 |
|
0ex |
|
| 15 |
13 14
|
op1std |
|
| 16 |
15
|
eleq1d |
|
| 17 |
16
|
ad2antrl |
|
| 18 |
12 17
|
mpbird |
|
| 19 |
18
|
3adant3 |
|
| 20 |
|
oveq1 |
|
| 21 |
20
|
eqeq2d |
|
| 22 |
21
|
rexbidv |
|
| 23 |
|
eqidd |
|
| 24 |
|
id |
|
| 25 |
23 24
|
goaleq12d |
|
| 26 |
25
|
eqeq2d |
|
| 27 |
26
|
rexbidv |
|
| 28 |
22 27
|
orbi12d |
|
| 29 |
28
|
adantl |
|
| 30 |
2
|
satf0op |
|
| 31 |
|
fmlafvel |
|
| 32 |
31
|
biimprd |
|
| 33 |
32
|
adantld |
|
| 34 |
33
|
imp |
|
| 35 |
|
vex |
|
| 36 |
35 14
|
op1std |
|
| 37 |
36
|
eleq1d |
|
| 38 |
37
|
ad2antrl |
|
| 39 |
34 38
|
mpbird |
|
| 40 |
39
|
adantr |
|
| 41 |
|
oveq2 |
|
| 42 |
41
|
eqeq2d |
|
| 43 |
42
|
adantl |
|
| 44 |
|
simpr |
|
| 45 |
40 43 44
|
rspcedvd |
|
| 46 |
45
|
exp31 |
|
| 47 |
46
|
exlimdv |
|
| 48 |
30 47
|
sylbid |
|
| 49 |
48
|
rexlimdv |
|
| 50 |
49
|
adantr |
|
| 51 |
15
|
oveq1d |
|
| 52 |
51
|
eqeq2d |
|
| 53 |
52
|
rexbidv |
|
| 54 |
15
|
oveq1d |
|
| 55 |
54
|
eqeq2d |
|
| 56 |
55
|
rexbidv |
|
| 57 |
53 56
|
imbi12d |
|
| 58 |
57
|
ad2antrl |
|
| 59 |
50 58
|
mpbird |
|
| 60 |
59
|
orim1d |
|
| 61 |
60
|
3impia |
|
| 62 |
19 29 61
|
rspcedvd |
|
| 63 |
62
|
3exp |
|
| 64 |
63
|
exlimdv |
|
| 65 |
8 64
|
syl7bi |
|
| 66 |
3 65
|
sylbid |
|
| 67 |
66
|
rexlimdv |
|
| 68 |
|
fmlafvel |
|
| 69 |
68
|
biimpa |
|
| 70 |
69
|
adantr |
|
| 71 |
|
vex |
|
| 72 |
71 14
|
op1std |
|
| 73 |
72
|
oveq1d |
|
| 74 |
73
|
eqeq2d |
|
| 75 |
74
|
rexbidv |
|
| 76 |
|
eqidd |
|
| 77 |
76 72
|
goaleq12d |
|
| 78 |
77
|
eqeq2d |
|
| 79 |
78
|
rexbidv |
|
| 80 |
75 79
|
orbi12d |
|
| 81 |
80
|
adantl |
|
| 82 |
|
fmlafvel |
|
| 83 |
82
|
biimpd |
|
| 84 |
83
|
adantr |
|
| 85 |
84
|
imp |
|
| 86 |
85
|
adantr |
|
| 87 |
|
vex |
|
| 88 |
87 14
|
op1std |
|
| 89 |
88
|
oveq2d |
|
| 90 |
89
|
eqeq2d |
|
| 91 |
90
|
adantl |
|
| 92 |
|
simpr |
|
| 93 |
86 91 92
|
rspcedvd |
|
| 94 |
93
|
rexlimdva2 |
|
| 95 |
94
|
orim1d |
|
| 96 |
95
|
imp |
|
| 97 |
70 81 96
|
rspcedvd |
|
| 98 |
97
|
rexlimdva2 |
|
| 99 |
67 98
|
impbid |
|
| 100 |
99
|
abbidv |
|
| 101 |
100
|
uneq2d |
|
| 102 |
1 101
|
eqtrd |
|