Metamath Proof Explorer


Theorem satf0op

Description: An element of a value of the satisfaction predicate as function over wff codes in the empty model and the empty binary relation expressed as ordered pair. (Contributed by AV, 19-Sep-2023)

Ref Expression
Hypothesis satf0op.s S=Sat
Assertion satf0op NωXSNxX=xxSN

Proof

Step Hyp Ref Expression
1 satf0op.s S=Sat
2 fveq2 y=Sy=S
3 2 eleq2d y=XSyXS
4 2 eleq2d y=xSyxS
5 4 anbi2d y=X=xxSyX=xxS
6 5 exbidv y=xX=xxSyxX=xxS
7 3 6 bibi12d y=XSyxX=xxSyXSxX=xxS
8 fveq2 y=zSy=Sz
9 8 eleq2d y=zXSyXSz
10 8 eleq2d y=zxSyxSz
11 10 anbi2d y=zX=xxSyX=xxSz
12 11 exbidv y=zxX=xxSyxX=xxSz
13 9 12 bibi12d y=zXSyxX=xxSyXSzxX=xxSz
14 fveq2 y=suczSy=Ssucz
15 14 eleq2d y=suczXSyXSsucz
16 14 eleq2d y=suczxSyxSsucz
17 16 anbi2d y=suczX=xxSyX=xxSsucz
18 17 exbidv y=suczxX=xxSyxX=xxSsucz
19 15 18 bibi12d y=suczXSyxX=xxSyXSsuczxX=xxSsucz
20 fveq2 y=NSy=SN
21 20 eleq2d y=NXSyXSN
22 20 eleq2d y=NxSyxSN
23 22 anbi2d y=NX=xxSyX=xxSN
24 23 exbidv y=NxX=xxSyxX=xxSN
25 21 24 bibi12d y=NXSyxX=xxSyXSNxX=xxSN
26 1 fveq1i S=Sat
27 satf00 Sat=xy|y=iωjωx=i𝑔j
28 26 27 eqtri S=xy|y=iωjωx=i𝑔j
29 28 eleq2i XSXxy|y=iωjωx=i𝑔j
30 elopab Xxy|y=iωjωx=i𝑔jxyX=xyy=iωjωx=i𝑔j
31 opeq2 y=xy=x
32 31 adantr y=iωjωx=i𝑔jxy=x
33 32 eqeq2d y=iωjωx=i𝑔jX=xyX=x
34 33 biimpd y=iωjωx=i𝑔jX=xyX=x
35 34 impcom X=xyy=iωjωx=i𝑔jX=x
36 eqidd y==
37 36 anim1i y=iωjωx=i𝑔j=iωjωx=i𝑔j
38 37 adantl X=xyy=iωjωx=i𝑔j=iωjωx=i𝑔j
39 satf00 Sat=yz|z=iωjωy=i𝑔j
40 26 39 eqtri S=yz|z=iωjωy=i𝑔j
41 40 eleq2i xSxyz|z=iωjωy=i𝑔j
42 vex xV
43 0ex V
44 eqeq1 z=z==
45 eqeq1 y=xy=i𝑔jx=i𝑔j
46 45 2rexbidv y=xiωjωy=i𝑔jiωjωx=i𝑔j
47 44 46 bi2anan9r y=xz=z=iωjωy=i𝑔j=iωjωx=i𝑔j
48 42 43 47 opelopaba xyz|z=iωjωy=i𝑔j=iωjωx=i𝑔j
49 41 48 bitri xS=iωjωx=i𝑔j
50 38 49 sylibr X=xyy=iωjωx=i𝑔jxS
51 35 50 jca X=xyy=iωjωx=i𝑔jX=xxS
52 51 exlimiv yX=xyy=iωjωx=i𝑔jX=xxS
53 31 eqeq2d y=X=xyX=x
54 eqeq1 y=y==
55 54 anbi1d y=y=iωjωx=i𝑔j=iωjωx=i𝑔j
56 53 55 anbi12d y=X=xyy=iωjωx=i𝑔jX=x=iωjωx=i𝑔j
57 43 56 spcev X=x=iωjωx=i𝑔jyX=xyy=iωjωx=i𝑔j
58 49 57 sylan2b X=xxSyX=xyy=iωjωx=i𝑔j
59 52 58 impbii yX=xyy=iωjωx=i𝑔jX=xxS
60 59 exbii xyX=xyy=iωjωx=i𝑔jxX=xxS
61 29 30 60 3bitri XSxX=xxS
62 1 satf0suc zωSsucz=Szab|b=uSzvSza=1stu𝑔1stviωa=𝑔i1stu
63 62 eleq2d zωXSsuczXSzab|b=uSzvSza=1stu𝑔1stviωa=𝑔i1stu
64 elun XSzab|b=uSzvSza=1stu𝑔1stviωa=𝑔i1stuXSzXab|b=uSzvSza=1stu𝑔1stviωa=𝑔i1stu
65 64 a1i zωXSzab|b=uSzvSza=1stu𝑔1stviωa=𝑔i1stuXSzXab|b=uSzvSza=1stu𝑔1stviωa=𝑔i1stu
66 elopab Xab|b=uSzvSza=1stu𝑔1stviωa=𝑔i1stuabX=abb=uSzvSza=1stu𝑔1stviωa=𝑔i1stu
67 66 a1i zωXab|b=uSzvSza=1stu𝑔1stviωa=𝑔i1stuabX=abb=uSzvSza=1stu𝑔1stviωa=𝑔i1stu
68 67 orbi2d zωXSzXab|b=uSzvSza=1stu𝑔1stviωa=𝑔i1stuXSzabX=abb=uSzvSza=1stu𝑔1stviωa=𝑔i1stu
69 63 65 68 3bitrd zωXSsuczXSzabX=abb=uSzvSza=1stu𝑔1stviωa=𝑔i1stu
70 69 adantr zωXSzxX=xxSzXSsuczXSzabX=abb=uSzvSza=1stu𝑔1stviωa=𝑔i1stu
71 simpr zωXSzxX=xxSzXSzxX=xxSz
72 opeq2 b=ab=a
73 72 eqeq2d b=X=abX=a
74 73 biimpd b=X=abX=a
75 74 adantr b=uSzvSza=1stu𝑔1stviωa=𝑔i1stuX=abX=a
76 75 impcom X=abb=uSzvSza=1stu𝑔1stviωa=𝑔i1stuX=a
77 eqidd X=abb=uSzvSza=1stu𝑔1stviωa=𝑔i1stu=
78 simpr b=uSzvSza=1stu𝑔1stviωa=𝑔i1stuuSzvSza=1stu𝑔1stviωa=𝑔i1stu
79 78 adantl X=abb=uSzvSza=1stu𝑔1stviωa=𝑔i1stuuSzvSza=1stu𝑔1stviωa=𝑔i1stu
80 77 79 jca X=abb=uSzvSza=1stu𝑔1stviωa=𝑔i1stu=uSzvSza=1stu𝑔1stviωa=𝑔i1stu
81 76 80 jca X=abb=uSzvSza=1stu𝑔1stviωa=𝑔i1stuX=a=uSzvSza=1stu𝑔1stviωa=𝑔i1stu
82 81 exlimiv bX=abb=uSzvSza=1stu𝑔1stviωa=𝑔i1stuX=a=uSzvSza=1stu𝑔1stviωa=𝑔i1stu
83 eqeq1 b=b==
84 83 anbi1d b=b=uSzvSza=1stu𝑔1stviωa=𝑔i1stu=uSzvSza=1stu𝑔1stviωa=𝑔i1stu
85 73 84 anbi12d b=X=abb=uSzvSza=1stu𝑔1stviωa=𝑔i1stuX=a=uSzvSza=1stu𝑔1stviωa=𝑔i1stu
86 43 85 spcev X=a=uSzvSza=1stu𝑔1stviωa=𝑔i1stubX=abb=uSzvSza=1stu𝑔1stviωa=𝑔i1stu
87 82 86 impbii bX=abb=uSzvSza=1stu𝑔1stviωa=𝑔i1stuX=a=uSzvSza=1stu𝑔1stviωa=𝑔i1stu
88 87 exbii abX=abb=uSzvSza=1stu𝑔1stviωa=𝑔i1stuaX=a=uSzvSza=1stu𝑔1stviωa=𝑔i1stu
89 88 a1i zωabX=abb=uSzvSza=1stu𝑔1stviωa=𝑔i1stuaX=a=uSzvSza=1stu𝑔1stviωa=𝑔i1stu
90 opeq1 x=ax=a
91 90 eqeq2d x=aX=xX=a
92 eqeq1 x=ax=1stu𝑔1stva=1stu𝑔1stv
93 92 rexbidv x=avSzx=1stu𝑔1stvvSza=1stu𝑔1stv
94 eqeq1 x=ax=𝑔i1stua=𝑔i1stu
95 94 rexbidv x=aiωx=𝑔i1stuiωa=𝑔i1stu
96 93 95 orbi12d x=avSzx=1stu𝑔1stviωx=𝑔i1stuvSza=1stu𝑔1stviωa=𝑔i1stu
97 96 rexbidv x=auSzvSzx=1stu𝑔1stviωx=𝑔i1stuuSzvSza=1stu𝑔1stviωa=𝑔i1stu
98 97 anbi2d x=a=uSzvSzx=1stu𝑔1stviωx=𝑔i1stu=uSzvSza=1stu𝑔1stviωa=𝑔i1stu
99 91 98 anbi12d x=aX=x=uSzvSzx=1stu𝑔1stviωx=𝑔i1stuX=a=uSzvSza=1stu𝑔1stviωa=𝑔i1stu
100 99 cbvexvw xX=x=uSzvSzx=1stu𝑔1stviωx=𝑔i1stuaX=a=uSzvSza=1stu𝑔1stviωa=𝑔i1stu
101 89 100 bitr4di zωabX=abb=uSzvSza=1stu𝑔1stviωa=𝑔i1stuxX=x=uSzvSzx=1stu𝑔1stviωx=𝑔i1stu
102 101 adantr zωXSzxX=xxSzabX=abb=uSzvSza=1stu𝑔1stviωa=𝑔i1stuxX=x=uSzvSzx=1stu𝑔1stviωx=𝑔i1stu
103 71 102 orbi12d zωXSzxX=xxSzXSzabX=abb=uSzvSza=1stu𝑔1stviωa=𝑔i1stuxX=xxSzxX=x=uSzvSzx=1stu𝑔1stviωx=𝑔i1stu
104 19.43 xX=xxSzX=x=uSzvSzx=1stu𝑔1stviωx=𝑔i1stuxX=xxSzxX=x=uSzvSzx=1stu𝑔1stviωx=𝑔i1stu
105 andi X=xxSz=uSzvSzx=1stu𝑔1stviωx=𝑔i1stuX=xxSzX=x=uSzvSzx=1stu𝑔1stviωx=𝑔i1stu
106 105 bicomi X=xxSzX=x=uSzvSzx=1stu𝑔1stviωx=𝑔i1stuX=xxSz=uSzvSzx=1stu𝑔1stviωx=𝑔i1stu
107 106 exbii xX=xxSzX=x=uSzvSzx=1stu𝑔1stviωx=𝑔i1stuxX=xxSz=uSzvSzx=1stu𝑔1stviωx=𝑔i1stu
108 104 107 bitr3i xX=xxSzxX=x=uSzvSzx=1stu𝑔1stviωx=𝑔i1stuxX=xxSz=uSzvSzx=1stu𝑔1stviωx=𝑔i1stu
109 103 108 bitrdi zωXSzxX=xxSzXSzabX=abb=uSzvSza=1stu𝑔1stviωa=𝑔i1stuxX=xxSz=uSzvSzx=1stu𝑔1stviωx=𝑔i1stu
110 62 eleq2d zωxSsuczxSzab|b=uSzvSza=1stu𝑔1stviωa=𝑔i1stu
111 elun xSzab|b=uSzvSza=1stu𝑔1stviωa=𝑔i1stuxSzxab|b=uSzvSza=1stu𝑔1stviωa=𝑔i1stu
112 eqeq1 a=xa=1stu𝑔1stvx=1stu𝑔1stv
113 112 rexbidv a=xvSza=1stu𝑔1stvvSzx=1stu𝑔1stv
114 eqeq1 a=xa=𝑔i1stux=𝑔i1stu
115 114 rexbidv a=xiωa=𝑔i1stuiωx=𝑔i1stu
116 113 115 orbi12d a=xvSza=1stu𝑔1stviωa=𝑔i1stuvSzx=1stu𝑔1stviωx=𝑔i1stu
117 116 rexbidv a=xuSzvSza=1stu𝑔1stviωa=𝑔i1stuuSzvSzx=1stu𝑔1stviωx=𝑔i1stu
118 83 117 bi2anan9r a=xb=b=uSzvSza=1stu𝑔1stviωa=𝑔i1stu=uSzvSzx=1stu𝑔1stviωx=𝑔i1stu
119 42 43 118 opelopaba xab|b=uSzvSza=1stu𝑔1stviωa=𝑔i1stu=uSzvSzx=1stu𝑔1stviωx=𝑔i1stu
120 119 orbi2i xSzxab|b=uSzvSza=1stu𝑔1stviωa=𝑔i1stuxSz=uSzvSzx=1stu𝑔1stviωx=𝑔i1stu
121 111 120 bitri xSzab|b=uSzvSza=1stu𝑔1stviωa=𝑔i1stuxSz=uSzvSzx=1stu𝑔1stviωx=𝑔i1stu
122 110 121 bitrdi zωxSsuczxSz=uSzvSzx=1stu𝑔1stviωx=𝑔i1stu
123 122 anbi2d zωX=xxSsuczX=xxSz=uSzvSzx=1stu𝑔1stviωx=𝑔i1stu
124 123 exbidv zωxX=xxSsuczxX=xxSz=uSzvSzx=1stu𝑔1stviωx=𝑔i1stu
125 124 bicomd zωxX=xxSz=uSzvSzx=1stu𝑔1stviωx=𝑔i1stuxX=xxSsucz
126 125 adantr zωXSzxX=xxSzxX=xxSz=uSzvSzx=1stu𝑔1stviωx=𝑔i1stuxX=xxSsucz
127 70 109 126 3bitrd zωXSzxX=xxSzXSsuczxX=xxSsucz
128 127 ex zωXSzxX=xxSzXSsuczxX=xxSsucz
129 7 13 19 25 61 128 finds NωXSNxX=xxSN