Metamath Proof Explorer


Theorem fmlafvel

Description: A class is a valid Godel formula of height N iff it is the first component of a member of the value of the satisfaction predicate as function over wff codes in the empty model with an empty binary relation at N . (Contributed by AV, 19-Sep-2023)

Ref Expression
Assertion fmlafvel NωFFmlaNFSatN

Proof

Step Hyp Ref Expression
1 fveq2 x=Fmlax=Fmla
2 1 eleq2d x=FFmlaxFFmla
3 fveq2 x=Satx=Sat
4 3 eleq2d x=FSatxFSat
5 2 4 bibi12d x=FFmlaxFSatxFFmlaFSat
6 5 imbi2d x=FVFFmlaxFSatxFVFFmlaFSat
7 fveq2 x=yFmlax=Fmlay
8 7 eleq2d x=yFFmlaxFFmlay
9 fveq2 x=ySatx=Saty
10 9 eleq2d x=yFSatxFSaty
11 8 10 bibi12d x=yFFmlaxFSatxFFmlayFSaty
12 11 imbi2d x=yFVFFmlaxFSatxFVFFmlayFSaty
13 fveq2 x=sucyFmlax=Fmlasucy
14 13 eleq2d x=sucyFFmlaxFFmlasucy
15 fveq2 x=sucySatx=Satsucy
16 15 eleq2d x=sucyFSatxFSatsucy
17 14 16 bibi12d x=sucyFFmlaxFSatxFFmlasucyFSatsucy
18 17 imbi2d x=sucyFVFFmlaxFSatxFVFFmlasucyFSatsucy
19 fveq2 x=NFmlax=FmlaN
20 19 eleq2d x=NFFmlaxFFmlaN
21 fveq2 x=NSatx=SatN
22 21 eleq2d x=NFSatxFSatN
23 20 22 bibi12d x=NFFmlaxFSatxFFmlaNFSatN
24 23 imbi2d x=NFVFFmlaxFSatxFVFFmlaNFSatN
25 eqeq1 x=Fx=i𝑔jF=i𝑔j
26 25 2rexbidv x=Fiωjωx=i𝑔jiωjωF=i𝑔j
27 26 elrab FxV|iωjωx=i𝑔jFViωjωF=i𝑔j
28 eqidd FViωjωF=i𝑔j=
29 simpr FViωjωF=i𝑔jiωjωF=i𝑔j
30 28 29 jca FViωjωF=i𝑔j=iωjωF=i𝑔j
31 simpr =iωjωF=i𝑔jiωjωF=i𝑔j
32 31 anim2i FV=iωjωF=i𝑔jFViωjωF=i𝑔j
33 32 ex FV=iωjωF=i𝑔jFViωjωF=i𝑔j
34 30 33 impbid2 FVFViωjωF=i𝑔j=iωjωF=i𝑔j
35 27 34 bitrid FVFxV|iωjωx=i𝑔j=iωjωF=i𝑔j
36 fmla0 Fmla=xV|iωjωx=i𝑔j
37 36 eleq2i FFmlaFxV|iωjωx=i𝑔j
38 37 a1i FVFFmlaFxV|iωjωx=i𝑔j
39 satf00 Sat=xy|y=iωjωx=i𝑔j
40 39 a1i FVSat=xy|y=iωjωx=i𝑔j
41 40 eleq2d FVFSatFxy|y=iωjωx=i𝑔j
42 0ex V
43 eqeq1 y=y==
44 43 26 bi2anan9r x=Fy=y=iωjωx=i𝑔j=iωjωF=i𝑔j
45 44 opelopabga FVVFxy|y=iωjωx=i𝑔j=iωjωF=i𝑔j
46 42 45 mpan2 FVFxy|y=iωjωx=i𝑔j=iωjωF=i𝑔j
47 41 46 bitrd FVFSat=iωjωF=i𝑔j
48 35 38 47 3bitr4d FVFFmlaFSat
49 eqid =
50 49 biantrur uSatyvSatyF=1stu𝑔1stviωF=𝑔i1stu=uSatyvSatyF=1stu𝑔1stviωF=𝑔i1stu
51 50 bicomi =uSatyvSatyF=1stu𝑔1stviωF=𝑔i1stuuSatyvSatyF=1stu𝑔1stviωF=𝑔i1stu
52 51 a1i FV=uSatyvSatyF=1stu𝑔1stviωF=𝑔i1stuuSatyvSatyF=1stu𝑔1stviωF=𝑔i1stu
53 eqeq1 z=z==
54 eqeq1 x=Fx=1stu𝑔1stvF=1stu𝑔1stv
55 54 rexbidv x=FvSatyx=1stu𝑔1stvvSatyF=1stu𝑔1stv
56 eqeq1 x=Fx=𝑔i1stuF=𝑔i1stu
57 56 rexbidv x=Fiωx=𝑔i1stuiωF=𝑔i1stu
58 55 57 orbi12d x=FvSatyx=1stu𝑔1stviωx=𝑔i1stuvSatyF=1stu𝑔1stviωF=𝑔i1stu
59 58 rexbidv x=FuSatyvSatyx=1stu𝑔1stviωx=𝑔i1stuuSatyvSatyF=1stu𝑔1stviωF=𝑔i1stu
60 53 59 bi2anan9r x=Fz=z=uSatyvSatyx=1stu𝑔1stviωx=𝑔i1stu=uSatyvSatyF=1stu𝑔1stviωF=𝑔i1stu
61 60 opelopabga FVVFxz|z=uSatyvSatyx=1stu𝑔1stviωx=𝑔i1stu=uSatyvSatyF=1stu𝑔1stviωF=𝑔i1stu
62 42 61 mpan2 FVFxz|z=uSatyvSatyx=1stu𝑔1stviωx=𝑔i1stu=uSatyvSatyF=1stu𝑔1stviωF=𝑔i1stu
63 59 elabg FVFx|uSatyvSatyx=1stu𝑔1stviωx=𝑔i1stuuSatyvSatyF=1stu𝑔1stviωF=𝑔i1stu
64 52 62 63 3bitr4d FVFxz|z=uSatyvSatyx=1stu𝑔1stviωx=𝑔i1stuFx|uSatyvSatyx=1stu𝑔1stviωx=𝑔i1stu
65 64 adantl yωFVFFmlayFSatyFVFxz|z=uSatyvSatyx=1stu𝑔1stviωx=𝑔i1stuFx|uSatyvSatyx=1stu𝑔1stviωx=𝑔i1stu
66 65 orbi2d yωFVFFmlayFSatyFVFSatyFxz|z=uSatyvSatyx=1stu𝑔1stviωx=𝑔i1stuFSatyFx|uSatyvSatyx=1stu𝑔1stviωx=𝑔i1stu
67 eqid Sat=Sat
68 67 satf0suc yωSatsucy=Satyxz|z=uSatyvSatyx=1stu𝑔1stviωx=𝑔i1stu
69 68 eleq2d yωFSatsucyFSatyxz|z=uSatyvSatyx=1stu𝑔1stviωx=𝑔i1stu
70 elun FSatyxz|z=uSatyvSatyx=1stu𝑔1stviωx=𝑔i1stuFSatyFxz|z=uSatyvSatyx=1stu𝑔1stviωx=𝑔i1stu
71 69 70 bitrdi yωFSatsucyFSatyFxz|z=uSatyvSatyx=1stu𝑔1stviωx=𝑔i1stu
72 71 ad2antrr yωFVFFmlayFSatyFVFSatsucyFSatyFxz|z=uSatyvSatyx=1stu𝑔1stviωx=𝑔i1stu
73 fmlasuc0 yωFmlasucy=Fmlayx|uSatyvSatyx=1stu𝑔1stviωx=𝑔i1stu
74 73 eleq2d yωFFmlasucyFFmlayx|uSatyvSatyx=1stu𝑔1stviωx=𝑔i1stu
75 74 ad2antrr yωFVFFmlayFSatyFVFFmlasucyFFmlayx|uSatyvSatyx=1stu𝑔1stviωx=𝑔i1stu
76 elun FFmlayx|uSatyvSatyx=1stu𝑔1stviωx=𝑔i1stuFFmlayFx|uSatyvSatyx=1stu𝑔1stviωx=𝑔i1stu
77 76 a1i yωFVFFmlayFSatyFVFFmlayx|uSatyvSatyx=1stu𝑔1stviωx=𝑔i1stuFFmlayFx|uSatyvSatyx=1stu𝑔1stviωx=𝑔i1stu
78 simpr yωFVFFmlayFSatyFVFFmlayFSaty
79 78 imp yωFVFFmlayFSatyFVFFmlayFSaty
80 79 orbi1d yωFVFFmlayFSatyFVFFmlayFx|uSatyvSatyx=1stu𝑔1stviωx=𝑔i1stuFSatyFx|uSatyvSatyx=1stu𝑔1stviωx=𝑔i1stu
81 75 77 80 3bitrd yωFVFFmlayFSatyFVFFmlasucyFSatyFx|uSatyvSatyx=1stu𝑔1stviωx=𝑔i1stu
82 66 72 81 3bitr4rd yωFVFFmlayFSatyFVFFmlasucyFSatsucy
83 82 exp31 yωFVFFmlayFSatyFVFFmlasucyFSatsucy
84 6 12 18 24 48 83 finds NωFVFFmlaNFSatN
85 84 com12 FVNωFFmlaNFSatN
86 prcnel ¬FV¬FFmlaN
87 86 adantr ¬FVNω¬FFmlaN
88 opprc1 ¬FVF=
89 88 adantr ¬FVNωF=
90 satf0n0 NωSatN
91 df-nel SatN¬SatN
92 90 91 sylib Nω¬SatN
93 92 adantl ¬FVNω¬SatN
94 89 93 eqneltrd ¬FVNω¬FSatN
95 87 94 2falsed ¬FVNωFFmlaNFSatN
96 95 ex ¬FVNωFFmlaNFSatN
97 85 96 pm2.61i NωFFmlaNFSatN