Step |
Hyp |
Ref |
Expression |
1 |
|
fveq2 |
|- ( x = (/) -> ( Fmla ` x ) = ( Fmla ` (/) ) ) |
2 |
1
|
eleq2d |
|- ( x = (/) -> ( F e. ( Fmla ` x ) <-> F e. ( Fmla ` (/) ) ) ) |
3 |
|
fveq2 |
|- ( x = (/) -> ( ( (/) Sat (/) ) ` x ) = ( ( (/) Sat (/) ) ` (/) ) ) |
4 |
3
|
eleq2d |
|- ( x = (/) -> ( <. F , (/) >. e. ( ( (/) Sat (/) ) ` x ) <-> <. F , (/) >. e. ( ( (/) Sat (/) ) ` (/) ) ) ) |
5 |
2 4
|
bibi12d |
|- ( x = (/) -> ( ( F e. ( Fmla ` x ) <-> <. F , (/) >. e. ( ( (/) Sat (/) ) ` x ) ) <-> ( F e. ( Fmla ` (/) ) <-> <. F , (/) >. e. ( ( (/) Sat (/) ) ` (/) ) ) ) ) |
6 |
5
|
imbi2d |
|- ( x = (/) -> ( ( F e. _V -> ( F e. ( Fmla ` x ) <-> <. F , (/) >. e. ( ( (/) Sat (/) ) ` x ) ) ) <-> ( F e. _V -> ( F e. ( Fmla ` (/) ) <-> <. F , (/) >. e. ( ( (/) Sat (/) ) ` (/) ) ) ) ) ) |
7 |
|
fveq2 |
|- ( x = y -> ( Fmla ` x ) = ( Fmla ` y ) ) |
8 |
7
|
eleq2d |
|- ( x = y -> ( F e. ( Fmla ` x ) <-> F e. ( Fmla ` y ) ) ) |
9 |
|
fveq2 |
|- ( x = y -> ( ( (/) Sat (/) ) ` x ) = ( ( (/) Sat (/) ) ` y ) ) |
10 |
9
|
eleq2d |
|- ( x = y -> ( <. F , (/) >. e. ( ( (/) Sat (/) ) ` x ) <-> <. F , (/) >. e. ( ( (/) Sat (/) ) ` y ) ) ) |
11 |
8 10
|
bibi12d |
|- ( x = y -> ( ( F e. ( Fmla ` x ) <-> <. F , (/) >. e. ( ( (/) Sat (/) ) ` x ) ) <-> ( F e. ( Fmla ` y ) <-> <. F , (/) >. e. ( ( (/) Sat (/) ) ` y ) ) ) ) |
12 |
11
|
imbi2d |
|- ( x = y -> ( ( F e. _V -> ( F e. ( Fmla ` x ) <-> <. F , (/) >. e. ( ( (/) Sat (/) ) ` x ) ) ) <-> ( F e. _V -> ( F e. ( Fmla ` y ) <-> <. F , (/) >. e. ( ( (/) Sat (/) ) ` y ) ) ) ) ) |
13 |
|
fveq2 |
|- ( x = suc y -> ( Fmla ` x ) = ( Fmla ` suc y ) ) |
14 |
13
|
eleq2d |
|- ( x = suc y -> ( F e. ( Fmla ` x ) <-> F e. ( Fmla ` suc y ) ) ) |
15 |
|
fveq2 |
|- ( x = suc y -> ( ( (/) Sat (/) ) ` x ) = ( ( (/) Sat (/) ) ` suc y ) ) |
16 |
15
|
eleq2d |
|- ( x = suc y -> ( <. F , (/) >. e. ( ( (/) Sat (/) ) ` x ) <-> <. F , (/) >. e. ( ( (/) Sat (/) ) ` suc y ) ) ) |
17 |
14 16
|
bibi12d |
|- ( x = suc y -> ( ( F e. ( Fmla ` x ) <-> <. F , (/) >. e. ( ( (/) Sat (/) ) ` x ) ) <-> ( F e. ( Fmla ` suc y ) <-> <. F , (/) >. e. ( ( (/) Sat (/) ) ` suc y ) ) ) ) |
18 |
17
|
imbi2d |
|- ( x = suc y -> ( ( F e. _V -> ( F e. ( Fmla ` x ) <-> <. F , (/) >. e. ( ( (/) Sat (/) ) ` x ) ) ) <-> ( F e. _V -> ( F e. ( Fmla ` suc y ) <-> <. F , (/) >. e. ( ( (/) Sat (/) ) ` suc y ) ) ) ) ) |
19 |
|
fveq2 |
|- ( x = N -> ( Fmla ` x ) = ( Fmla ` N ) ) |
20 |
19
|
eleq2d |
|- ( x = N -> ( F e. ( Fmla ` x ) <-> F e. ( Fmla ` N ) ) ) |
21 |
|
fveq2 |
|- ( x = N -> ( ( (/) Sat (/) ) ` x ) = ( ( (/) Sat (/) ) ` N ) ) |
22 |
21
|
eleq2d |
|- ( x = N -> ( <. F , (/) >. e. ( ( (/) Sat (/) ) ` x ) <-> <. F , (/) >. e. ( ( (/) Sat (/) ) ` N ) ) ) |
23 |
20 22
|
bibi12d |
|- ( x = N -> ( ( F e. ( Fmla ` x ) <-> <. F , (/) >. e. ( ( (/) Sat (/) ) ` x ) ) <-> ( F e. ( Fmla ` N ) <-> <. F , (/) >. e. ( ( (/) Sat (/) ) ` N ) ) ) ) |
24 |
23
|
imbi2d |
|- ( x = N -> ( ( F e. _V -> ( F e. ( Fmla ` x ) <-> <. F , (/) >. e. ( ( (/) Sat (/) ) ` x ) ) ) <-> ( F e. _V -> ( F e. ( Fmla ` N ) <-> <. F , (/) >. e. ( ( (/) Sat (/) ) ` N ) ) ) ) ) |
25 |
|
eqeq1 |
|- ( x = F -> ( x = ( i e.g j ) <-> F = ( i e.g j ) ) ) |
26 |
25
|
2rexbidv |
|- ( x = F -> ( E. i e. _om E. j e. _om x = ( i e.g j ) <-> E. i e. _om E. j e. _om F = ( i e.g j ) ) ) |
27 |
26
|
elrab |
|- ( F e. { x e. _V | E. i e. _om E. j e. _om x = ( i e.g j ) } <-> ( F e. _V /\ E. i e. _om E. j e. _om F = ( i e.g j ) ) ) |
28 |
|
eqidd |
|- ( ( F e. _V /\ E. i e. _om E. j e. _om F = ( i e.g j ) ) -> (/) = (/) ) |
29 |
|
simpr |
|- ( ( F e. _V /\ E. i e. _om E. j e. _om F = ( i e.g j ) ) -> E. i e. _om E. j e. _om F = ( i e.g j ) ) |
30 |
28 29
|
jca |
|- ( ( F e. _V /\ E. i e. _om E. j e. _om F = ( i e.g j ) ) -> ( (/) = (/) /\ E. i e. _om E. j e. _om F = ( i e.g j ) ) ) |
31 |
|
simpr |
|- ( ( (/) = (/) /\ E. i e. _om E. j e. _om F = ( i e.g j ) ) -> E. i e. _om E. j e. _om F = ( i e.g j ) ) |
32 |
31
|
anim2i |
|- ( ( F e. _V /\ ( (/) = (/) /\ E. i e. _om E. j e. _om F = ( i e.g j ) ) ) -> ( F e. _V /\ E. i e. _om E. j e. _om F = ( i e.g j ) ) ) |
33 |
32
|
ex |
|- ( F e. _V -> ( ( (/) = (/) /\ E. i e. _om E. j e. _om F = ( i e.g j ) ) -> ( F e. _V /\ E. i e. _om E. j e. _om F = ( i e.g j ) ) ) ) |
34 |
30 33
|
impbid2 |
|- ( F e. _V -> ( ( F e. _V /\ E. i e. _om E. j e. _om F = ( i e.g j ) ) <-> ( (/) = (/) /\ E. i e. _om E. j e. _om F = ( i e.g j ) ) ) ) |
35 |
27 34
|
syl5bb |
|- ( F e. _V -> ( F e. { x e. _V | E. i e. _om E. j e. _om x = ( i e.g j ) } <-> ( (/) = (/) /\ E. i e. _om E. j e. _om F = ( i e.g j ) ) ) ) |
36 |
|
fmla0 |
|- ( Fmla ` (/) ) = { x e. _V | E. i e. _om E. j e. _om x = ( i e.g j ) } |
37 |
36
|
eleq2i |
|- ( F e. ( Fmla ` (/) ) <-> F e. { x e. _V | E. i e. _om E. j e. _om x = ( i e.g j ) } ) |
38 |
37
|
a1i |
|- ( F e. _V -> ( F e. ( Fmla ` (/) ) <-> F e. { x e. _V | E. i e. _om E. j e. _om x = ( i e.g j ) } ) ) |
39 |
|
satf00 |
|- ( ( (/) Sat (/) ) ` (/) ) = { <. x , y >. | ( y = (/) /\ E. i e. _om E. j e. _om x = ( i e.g j ) ) } |
40 |
39
|
a1i |
|- ( F e. _V -> ( ( (/) Sat (/) ) ` (/) ) = { <. x , y >. | ( y = (/) /\ E. i e. _om E. j e. _om x = ( i e.g j ) ) } ) |
41 |
40
|
eleq2d |
|- ( F e. _V -> ( <. F , (/) >. e. ( ( (/) Sat (/) ) ` (/) ) <-> <. F , (/) >. e. { <. x , y >. | ( y = (/) /\ E. i e. _om E. j e. _om x = ( i e.g j ) ) } ) ) |
42 |
|
0ex |
|- (/) e. _V |
43 |
|
eqeq1 |
|- ( y = (/) -> ( y = (/) <-> (/) = (/) ) ) |
44 |
43 26
|
bi2anan9r |
|- ( ( x = F /\ y = (/) ) -> ( ( y = (/) /\ E. i e. _om E. j e. _om x = ( i e.g j ) ) <-> ( (/) = (/) /\ E. i e. _om E. j e. _om F = ( i e.g j ) ) ) ) |
45 |
44
|
opelopabga |
|- ( ( F e. _V /\ (/) e. _V ) -> ( <. F , (/) >. e. { <. x , y >. | ( y = (/) /\ E. i e. _om E. j e. _om x = ( i e.g j ) ) } <-> ( (/) = (/) /\ E. i e. _om E. j e. _om F = ( i e.g j ) ) ) ) |
46 |
42 45
|
mpan2 |
|- ( F e. _V -> ( <. F , (/) >. e. { <. x , y >. | ( y = (/) /\ E. i e. _om E. j e. _om x = ( i e.g j ) ) } <-> ( (/) = (/) /\ E. i e. _om E. j e. _om F = ( i e.g j ) ) ) ) |
47 |
41 46
|
bitrd |
|- ( F e. _V -> ( <. F , (/) >. e. ( ( (/) Sat (/) ) ` (/) ) <-> ( (/) = (/) /\ E. i e. _om E. j e. _om F = ( i e.g j ) ) ) ) |
48 |
35 38 47
|
3bitr4d |
|- ( F e. _V -> ( F e. ( Fmla ` (/) ) <-> <. F , (/) >. e. ( ( (/) Sat (/) ) ` (/) ) ) ) |
49 |
|
eqid |
|- (/) = (/) |
50 |
49
|
biantrur |
|- ( E. u e. ( ( (/) Sat (/) ) ` y ) ( E. v e. ( ( (/) Sat (/) ) ` y ) F = ( ( 1st ` u ) |g ( 1st ` v ) ) \/ E. i e. _om F = A.g i ( 1st ` u ) ) <-> ( (/) = (/) /\ E. u e. ( ( (/) Sat (/) ) ` y ) ( E. v e. ( ( (/) Sat (/) ) ` y ) F = ( ( 1st ` u ) |g ( 1st ` v ) ) \/ E. i e. _om F = A.g i ( 1st ` u ) ) ) ) |
51 |
50
|
bicomi |
|- ( ( (/) = (/) /\ E. u e. ( ( (/) Sat (/) ) ` y ) ( E. v e. ( ( (/) Sat (/) ) ` y ) F = ( ( 1st ` u ) |g ( 1st ` v ) ) \/ E. i e. _om F = A.g i ( 1st ` u ) ) ) <-> E. u e. ( ( (/) Sat (/) ) ` y ) ( E. v e. ( ( (/) Sat (/) ) ` y ) F = ( ( 1st ` u ) |g ( 1st ` v ) ) \/ E. i e. _om F = A.g i ( 1st ` u ) ) ) |
52 |
51
|
a1i |
|- ( F e. _V -> ( ( (/) = (/) /\ E. u e. ( ( (/) Sat (/) ) ` y ) ( E. v e. ( ( (/) Sat (/) ) ` y ) F = ( ( 1st ` u ) |g ( 1st ` v ) ) \/ E. i e. _om F = A.g i ( 1st ` u ) ) ) <-> E. u e. ( ( (/) Sat (/) ) ` y ) ( E. v e. ( ( (/) Sat (/) ) ` y ) F = ( ( 1st ` u ) |g ( 1st ` v ) ) \/ E. i e. _om F = A.g i ( 1st ` u ) ) ) ) |
53 |
|
eqeq1 |
|- ( z = (/) -> ( z = (/) <-> (/) = (/) ) ) |
54 |
|
eqeq1 |
|- ( x = F -> ( x = ( ( 1st ` u ) |g ( 1st ` v ) ) <-> F = ( ( 1st ` u ) |g ( 1st ` v ) ) ) ) |
55 |
54
|
rexbidv |
|- ( x = F -> ( E. v e. ( ( (/) Sat (/) ) ` y ) x = ( ( 1st ` u ) |g ( 1st ` v ) ) <-> E. v e. ( ( (/) Sat (/) ) ` y ) F = ( ( 1st ` u ) |g ( 1st ` v ) ) ) ) |
56 |
|
eqeq1 |
|- ( x = F -> ( x = A.g i ( 1st ` u ) <-> F = A.g i ( 1st ` u ) ) ) |
57 |
56
|
rexbidv |
|- ( x = F -> ( E. i e. _om x = A.g i ( 1st ` u ) <-> E. i e. _om F = A.g i ( 1st ` u ) ) ) |
58 |
55 57
|
orbi12d |
|- ( x = F -> ( ( E. v e. ( ( (/) Sat (/) ) ` y ) x = ( ( 1st ` u ) |g ( 1st ` v ) ) \/ E. i e. _om x = A.g i ( 1st ` u ) ) <-> ( E. v e. ( ( (/) Sat (/) ) ` y ) F = ( ( 1st ` u ) |g ( 1st ` v ) ) \/ E. i e. _om F = A.g i ( 1st ` u ) ) ) ) |
59 |
58
|
rexbidv |
|- ( x = F -> ( E. u e. ( ( (/) Sat (/) ) ` y ) ( E. v e. ( ( (/) Sat (/) ) ` y ) x = ( ( 1st ` u ) |g ( 1st ` v ) ) \/ E. i e. _om x = A.g i ( 1st ` u ) ) <-> E. u e. ( ( (/) Sat (/) ) ` y ) ( E. v e. ( ( (/) Sat (/) ) ` y ) F = ( ( 1st ` u ) |g ( 1st ` v ) ) \/ E. i e. _om F = A.g i ( 1st ` u ) ) ) ) |
60 |
53 59
|
bi2anan9r |
|- ( ( x = F /\ z = (/) ) -> ( ( z = (/) /\ E. u e. ( ( (/) Sat (/) ) ` y ) ( E. v e. ( ( (/) Sat (/) ) ` y ) x = ( ( 1st ` u ) |g ( 1st ` v ) ) \/ E. i e. _om x = A.g i ( 1st ` u ) ) ) <-> ( (/) = (/) /\ E. u e. ( ( (/) Sat (/) ) ` y ) ( E. v e. ( ( (/) Sat (/) ) ` y ) F = ( ( 1st ` u ) |g ( 1st ` v ) ) \/ E. i e. _om F = A.g i ( 1st ` u ) ) ) ) ) |
61 |
60
|
opelopabga |
|- ( ( F e. _V /\ (/) e. _V ) -> ( <. F , (/) >. e. { <. x , z >. | ( z = (/) /\ E. u e. ( ( (/) Sat (/) ) ` y ) ( E. v e. ( ( (/) Sat (/) ) ` y ) x = ( ( 1st ` u ) |g ( 1st ` v ) ) \/ E. i e. _om x = A.g i ( 1st ` u ) ) ) } <-> ( (/) = (/) /\ E. u e. ( ( (/) Sat (/) ) ` y ) ( E. v e. ( ( (/) Sat (/) ) ` y ) F = ( ( 1st ` u ) |g ( 1st ` v ) ) \/ E. i e. _om F = A.g i ( 1st ` u ) ) ) ) ) |
62 |
42 61
|
mpan2 |
|- ( F e. _V -> ( <. F , (/) >. e. { <. x , z >. | ( z = (/) /\ E. u e. ( ( (/) Sat (/) ) ` y ) ( E. v e. ( ( (/) Sat (/) ) ` y ) x = ( ( 1st ` u ) |g ( 1st ` v ) ) \/ E. i e. _om x = A.g i ( 1st ` u ) ) ) } <-> ( (/) = (/) /\ E. u e. ( ( (/) Sat (/) ) ` y ) ( E. v e. ( ( (/) Sat (/) ) ` y ) F = ( ( 1st ` u ) |g ( 1st ` v ) ) \/ E. i e. _om F = A.g i ( 1st ` u ) ) ) ) ) |
63 |
59
|
elabg |
|- ( F e. _V -> ( F e. { x | E. u e. ( ( (/) Sat (/) ) ` y ) ( E. v e. ( ( (/) Sat (/) ) ` y ) x = ( ( 1st ` u ) |g ( 1st ` v ) ) \/ E. i e. _om x = A.g i ( 1st ` u ) ) } <-> E. u e. ( ( (/) Sat (/) ) ` y ) ( E. v e. ( ( (/) Sat (/) ) ` y ) F = ( ( 1st ` u ) |g ( 1st ` v ) ) \/ E. i e. _om F = A.g i ( 1st ` u ) ) ) ) |
64 |
52 62 63
|
3bitr4d |
|- ( F e. _V -> ( <. F , (/) >. e. { <. x , z >. | ( z = (/) /\ E. u e. ( ( (/) Sat (/) ) ` y ) ( E. v e. ( ( (/) Sat (/) ) ` y ) x = ( ( 1st ` u ) |g ( 1st ` v ) ) \/ E. i e. _om x = A.g i ( 1st ` u ) ) ) } <-> F e. { x | E. u e. ( ( (/) Sat (/) ) ` y ) ( E. v e. ( ( (/) Sat (/) ) ` y ) x = ( ( 1st ` u ) |g ( 1st ` v ) ) \/ E. i e. _om x = A.g i ( 1st ` u ) ) } ) ) |
65 |
64
|
adantl |
|- ( ( ( y e. _om /\ ( F e. _V -> ( F e. ( Fmla ` y ) <-> <. F , (/) >. e. ( ( (/) Sat (/) ) ` y ) ) ) ) /\ F e. _V ) -> ( <. F , (/) >. e. { <. x , z >. | ( z = (/) /\ E. u e. ( ( (/) Sat (/) ) ` y ) ( E. v e. ( ( (/) Sat (/) ) ` y ) x = ( ( 1st ` u ) |g ( 1st ` v ) ) \/ E. i e. _om x = A.g i ( 1st ` u ) ) ) } <-> F e. { x | E. u e. ( ( (/) Sat (/) ) ` y ) ( E. v e. ( ( (/) Sat (/) ) ` y ) x = ( ( 1st ` u ) |g ( 1st ` v ) ) \/ E. i e. _om x = A.g i ( 1st ` u ) ) } ) ) |
66 |
65
|
orbi2d |
|- ( ( ( y e. _om /\ ( F e. _V -> ( F e. ( Fmla ` y ) <-> <. F , (/) >. e. ( ( (/) Sat (/) ) ` y ) ) ) ) /\ F e. _V ) -> ( ( <. F , (/) >. e. ( ( (/) Sat (/) ) ` y ) \/ <. F , (/) >. e. { <. x , z >. | ( z = (/) /\ E. u e. ( ( (/) Sat (/) ) ` y ) ( E. v e. ( ( (/) Sat (/) ) ` y ) x = ( ( 1st ` u ) |g ( 1st ` v ) ) \/ E. i e. _om x = A.g i ( 1st ` u ) ) ) } ) <-> ( <. F , (/) >. e. ( ( (/) Sat (/) ) ` y ) \/ F e. { x | E. u e. ( ( (/) Sat (/) ) ` y ) ( E. v e. ( ( (/) Sat (/) ) ` y ) x = ( ( 1st ` u ) |g ( 1st ` v ) ) \/ E. i e. _om x = A.g i ( 1st ` u ) ) } ) ) ) |
67 |
|
eqid |
|- ( (/) Sat (/) ) = ( (/) Sat (/) ) |
68 |
67
|
satf0suc |
|- ( y e. _om -> ( ( (/) Sat (/) ) ` suc y ) = ( ( ( (/) Sat (/) ) ` y ) u. { <. x , z >. | ( z = (/) /\ E. u e. ( ( (/) Sat (/) ) ` y ) ( E. v e. ( ( (/) Sat (/) ) ` y ) x = ( ( 1st ` u ) |g ( 1st ` v ) ) \/ E. i e. _om x = A.g i ( 1st ` u ) ) ) } ) ) |
69 |
68
|
eleq2d |
|- ( y e. _om -> ( <. F , (/) >. e. ( ( (/) Sat (/) ) ` suc y ) <-> <. F , (/) >. e. ( ( ( (/) Sat (/) ) ` y ) u. { <. x , z >. | ( z = (/) /\ E. u e. ( ( (/) Sat (/) ) ` y ) ( E. v e. ( ( (/) Sat (/) ) ` y ) x = ( ( 1st ` u ) |g ( 1st ` v ) ) \/ E. i e. _om x = A.g i ( 1st ` u ) ) ) } ) ) ) |
70 |
|
elun |
|- ( <. F , (/) >. e. ( ( ( (/) Sat (/) ) ` y ) u. { <. x , z >. | ( z = (/) /\ E. u e. ( ( (/) Sat (/) ) ` y ) ( E. v e. ( ( (/) Sat (/) ) ` y ) x = ( ( 1st ` u ) |g ( 1st ` v ) ) \/ E. i e. _om x = A.g i ( 1st ` u ) ) ) } ) <-> ( <. F , (/) >. e. ( ( (/) Sat (/) ) ` y ) \/ <. F , (/) >. e. { <. x , z >. | ( z = (/) /\ E. u e. ( ( (/) Sat (/) ) ` y ) ( E. v e. ( ( (/) Sat (/) ) ` y ) x = ( ( 1st ` u ) |g ( 1st ` v ) ) \/ E. i e. _om x = A.g i ( 1st ` u ) ) ) } ) ) |
71 |
69 70
|
bitrdi |
|- ( y e. _om -> ( <. F , (/) >. e. ( ( (/) Sat (/) ) ` suc y ) <-> ( <. F , (/) >. e. ( ( (/) Sat (/) ) ` y ) \/ <. F , (/) >. e. { <. x , z >. | ( z = (/) /\ E. u e. ( ( (/) Sat (/) ) ` y ) ( E. v e. ( ( (/) Sat (/) ) ` y ) x = ( ( 1st ` u ) |g ( 1st ` v ) ) \/ E. i e. _om x = A.g i ( 1st ` u ) ) ) } ) ) ) |
72 |
71
|
ad2antrr |
|- ( ( ( y e. _om /\ ( F e. _V -> ( F e. ( Fmla ` y ) <-> <. F , (/) >. e. ( ( (/) Sat (/) ) ` y ) ) ) ) /\ F e. _V ) -> ( <. F , (/) >. e. ( ( (/) Sat (/) ) ` suc y ) <-> ( <. F , (/) >. e. ( ( (/) Sat (/) ) ` y ) \/ <. F , (/) >. e. { <. x , z >. | ( z = (/) /\ E. u e. ( ( (/) Sat (/) ) ` y ) ( E. v e. ( ( (/) Sat (/) ) ` y ) x = ( ( 1st ` u ) |g ( 1st ` v ) ) \/ E. i e. _om x = A.g i ( 1st ` u ) ) ) } ) ) ) |
73 |
|
fmlasuc0 |
|- ( y e. _om -> ( Fmla ` suc y ) = ( ( Fmla ` y ) u. { x | E. u e. ( ( (/) Sat (/) ) ` y ) ( E. v e. ( ( (/) Sat (/) ) ` y ) x = ( ( 1st ` u ) |g ( 1st ` v ) ) \/ E. i e. _om x = A.g i ( 1st ` u ) ) } ) ) |
74 |
73
|
eleq2d |
|- ( y e. _om -> ( F e. ( Fmla ` suc y ) <-> F e. ( ( Fmla ` y ) u. { x | E. u e. ( ( (/) Sat (/) ) ` y ) ( E. v e. ( ( (/) Sat (/) ) ` y ) x = ( ( 1st ` u ) |g ( 1st ` v ) ) \/ E. i e. _om x = A.g i ( 1st ` u ) ) } ) ) ) |
75 |
74
|
ad2antrr |
|- ( ( ( y e. _om /\ ( F e. _V -> ( F e. ( Fmla ` y ) <-> <. F , (/) >. e. ( ( (/) Sat (/) ) ` y ) ) ) ) /\ F e. _V ) -> ( F e. ( Fmla ` suc y ) <-> F e. ( ( Fmla ` y ) u. { x | E. u e. ( ( (/) Sat (/) ) ` y ) ( E. v e. ( ( (/) Sat (/) ) ` y ) x = ( ( 1st ` u ) |g ( 1st ` v ) ) \/ E. i e. _om x = A.g i ( 1st ` u ) ) } ) ) ) |
76 |
|
elun |
|- ( F e. ( ( Fmla ` y ) u. { x | E. u e. ( ( (/) Sat (/) ) ` y ) ( E. v e. ( ( (/) Sat (/) ) ` y ) x = ( ( 1st ` u ) |g ( 1st ` v ) ) \/ E. i e. _om x = A.g i ( 1st ` u ) ) } ) <-> ( F e. ( Fmla ` y ) \/ F e. { x | E. u e. ( ( (/) Sat (/) ) ` y ) ( E. v e. ( ( (/) Sat (/) ) ` y ) x = ( ( 1st ` u ) |g ( 1st ` v ) ) \/ E. i e. _om x = A.g i ( 1st ` u ) ) } ) ) |
77 |
76
|
a1i |
|- ( ( ( y e. _om /\ ( F e. _V -> ( F e. ( Fmla ` y ) <-> <. F , (/) >. e. ( ( (/) Sat (/) ) ` y ) ) ) ) /\ F e. _V ) -> ( F e. ( ( Fmla ` y ) u. { x | E. u e. ( ( (/) Sat (/) ) ` y ) ( E. v e. ( ( (/) Sat (/) ) ` y ) x = ( ( 1st ` u ) |g ( 1st ` v ) ) \/ E. i e. _om x = A.g i ( 1st ` u ) ) } ) <-> ( F e. ( Fmla ` y ) \/ F e. { x | E. u e. ( ( (/) Sat (/) ) ` y ) ( E. v e. ( ( (/) Sat (/) ) ` y ) x = ( ( 1st ` u ) |g ( 1st ` v ) ) \/ E. i e. _om x = A.g i ( 1st ` u ) ) } ) ) ) |
78 |
|
simpr |
|- ( ( y e. _om /\ ( F e. _V -> ( F e. ( Fmla ` y ) <-> <. F , (/) >. e. ( ( (/) Sat (/) ) ` y ) ) ) ) -> ( F e. _V -> ( F e. ( Fmla ` y ) <-> <. F , (/) >. e. ( ( (/) Sat (/) ) ` y ) ) ) ) |
79 |
78
|
imp |
|- ( ( ( y e. _om /\ ( F e. _V -> ( F e. ( Fmla ` y ) <-> <. F , (/) >. e. ( ( (/) Sat (/) ) ` y ) ) ) ) /\ F e. _V ) -> ( F e. ( Fmla ` y ) <-> <. F , (/) >. e. ( ( (/) Sat (/) ) ` y ) ) ) |
80 |
79
|
orbi1d |
|- ( ( ( y e. _om /\ ( F e. _V -> ( F e. ( Fmla ` y ) <-> <. F , (/) >. e. ( ( (/) Sat (/) ) ` y ) ) ) ) /\ F e. _V ) -> ( ( F e. ( Fmla ` y ) \/ F e. { x | E. u e. ( ( (/) Sat (/) ) ` y ) ( E. v e. ( ( (/) Sat (/) ) ` y ) x = ( ( 1st ` u ) |g ( 1st ` v ) ) \/ E. i e. _om x = A.g i ( 1st ` u ) ) } ) <-> ( <. F , (/) >. e. ( ( (/) Sat (/) ) ` y ) \/ F e. { x | E. u e. ( ( (/) Sat (/) ) ` y ) ( E. v e. ( ( (/) Sat (/) ) ` y ) x = ( ( 1st ` u ) |g ( 1st ` v ) ) \/ E. i e. _om x = A.g i ( 1st ` u ) ) } ) ) ) |
81 |
75 77 80
|
3bitrd |
|- ( ( ( y e. _om /\ ( F e. _V -> ( F e. ( Fmla ` y ) <-> <. F , (/) >. e. ( ( (/) Sat (/) ) ` y ) ) ) ) /\ F e. _V ) -> ( F e. ( Fmla ` suc y ) <-> ( <. F , (/) >. e. ( ( (/) Sat (/) ) ` y ) \/ F e. { x | E. u e. ( ( (/) Sat (/) ) ` y ) ( E. v e. ( ( (/) Sat (/) ) ` y ) x = ( ( 1st ` u ) |g ( 1st ` v ) ) \/ E. i e. _om x = A.g i ( 1st ` u ) ) } ) ) ) |
82 |
66 72 81
|
3bitr4rd |
|- ( ( ( y e. _om /\ ( F e. _V -> ( F e. ( Fmla ` y ) <-> <. F , (/) >. e. ( ( (/) Sat (/) ) ` y ) ) ) ) /\ F e. _V ) -> ( F e. ( Fmla ` suc y ) <-> <. F , (/) >. e. ( ( (/) Sat (/) ) ` suc y ) ) ) |
83 |
82
|
exp31 |
|- ( y e. _om -> ( ( F e. _V -> ( F e. ( Fmla ` y ) <-> <. F , (/) >. e. ( ( (/) Sat (/) ) ` y ) ) ) -> ( F e. _V -> ( F e. ( Fmla ` suc y ) <-> <. F , (/) >. e. ( ( (/) Sat (/) ) ` suc y ) ) ) ) ) |
84 |
6 12 18 24 48 83
|
finds |
|- ( N e. _om -> ( F e. _V -> ( F e. ( Fmla ` N ) <-> <. F , (/) >. e. ( ( (/) Sat (/) ) ` N ) ) ) ) |
85 |
84
|
com12 |
|- ( F e. _V -> ( N e. _om -> ( F e. ( Fmla ` N ) <-> <. F , (/) >. e. ( ( (/) Sat (/) ) ` N ) ) ) ) |
86 |
|
prcnel |
|- ( -. F e. _V -> -. F e. ( Fmla ` N ) ) |
87 |
86
|
adantr |
|- ( ( -. F e. _V /\ N e. _om ) -> -. F e. ( Fmla ` N ) ) |
88 |
|
opprc1 |
|- ( -. F e. _V -> <. F , (/) >. = (/) ) |
89 |
88
|
adantr |
|- ( ( -. F e. _V /\ N e. _om ) -> <. F , (/) >. = (/) ) |
90 |
|
satf0n0 |
|- ( N e. _om -> (/) e/ ( ( (/) Sat (/) ) ` N ) ) |
91 |
|
df-nel |
|- ( (/) e/ ( ( (/) Sat (/) ) ` N ) <-> -. (/) e. ( ( (/) Sat (/) ) ` N ) ) |
92 |
90 91
|
sylib |
|- ( N e. _om -> -. (/) e. ( ( (/) Sat (/) ) ` N ) ) |
93 |
92
|
adantl |
|- ( ( -. F e. _V /\ N e. _om ) -> -. (/) e. ( ( (/) Sat (/) ) ` N ) ) |
94 |
89 93
|
eqneltrd |
|- ( ( -. F e. _V /\ N e. _om ) -> -. <. F , (/) >. e. ( ( (/) Sat (/) ) ` N ) ) |
95 |
87 94
|
2falsed |
|- ( ( -. F e. _V /\ N e. _om ) -> ( F e. ( Fmla ` N ) <-> <. F , (/) >. e. ( ( (/) Sat (/) ) ` N ) ) ) |
96 |
95
|
ex |
|- ( -. F e. _V -> ( N e. _om -> ( F e. ( Fmla ` N ) <-> <. F , (/) >. e. ( ( (/) Sat (/) ) ` N ) ) ) ) |
97 |
85 96
|
pm2.61i |
|- ( N e. _om -> ( F e. ( Fmla ` N ) <-> <. F , (/) >. e. ( ( (/) Sat (/) ) ` N ) ) ) |