| Step |
Hyp |
Ref |
Expression |
| 1 |
|
fmlasuc0 |
|- ( N e. _om -> ( Fmla ` suc N ) = ( ( Fmla ` N ) u. { x | E. y e. ( ( (/) Sat (/) ) ` N ) ( E. z e. ( ( (/) Sat (/) ) ` N ) x = ( ( 1st ` y ) |g ( 1st ` z ) ) \/ E. i e. _om x = A.g i ( 1st ` y ) ) } ) ) |
| 2 |
|
eqid |
|- ( (/) Sat (/) ) = ( (/) Sat (/) ) |
| 3 |
2
|
satf0op |
|- ( N e. _om -> ( y e. ( ( (/) Sat (/) ) ` N ) <-> E. z ( y = <. z , (/) >. /\ <. z , (/) >. e. ( ( (/) Sat (/) ) ` N ) ) ) ) |
| 4 |
|
fveq2 |
|- ( z = w -> ( 1st ` z ) = ( 1st ` w ) ) |
| 5 |
4
|
oveq2d |
|- ( z = w -> ( ( 1st ` y ) |g ( 1st ` z ) ) = ( ( 1st ` y ) |g ( 1st ` w ) ) ) |
| 6 |
5
|
eqeq2d |
|- ( z = w -> ( x = ( ( 1st ` y ) |g ( 1st ` z ) ) <-> x = ( ( 1st ` y ) |g ( 1st ` w ) ) ) ) |
| 7 |
6
|
cbvrexvw |
|- ( E. z e. ( ( (/) Sat (/) ) ` N ) x = ( ( 1st ` y ) |g ( 1st ` z ) ) <-> E. w e. ( ( (/) Sat (/) ) ` N ) x = ( ( 1st ` y ) |g ( 1st ` w ) ) ) |
| 8 |
7
|
orbi1i |
|- ( ( E. z e. ( ( (/) Sat (/) ) ` N ) x = ( ( 1st ` y ) |g ( 1st ` z ) ) \/ E. i e. _om x = A.g i ( 1st ` y ) ) <-> ( E. w e. ( ( (/) Sat (/) ) ` N ) x = ( ( 1st ` y ) |g ( 1st ` w ) ) \/ E. i e. _om x = A.g i ( 1st ` y ) ) ) |
| 9 |
|
fmlafvel |
|- ( N e. _om -> ( z e. ( Fmla ` N ) <-> <. z , (/) >. e. ( ( (/) Sat (/) ) ` N ) ) ) |
| 10 |
9
|
biimprd |
|- ( N e. _om -> ( <. z , (/) >. e. ( ( (/) Sat (/) ) ` N ) -> z e. ( Fmla ` N ) ) ) |
| 11 |
10
|
adantld |
|- ( N e. _om -> ( ( y = <. z , (/) >. /\ <. z , (/) >. e. ( ( (/) Sat (/) ) ` N ) ) -> z e. ( Fmla ` N ) ) ) |
| 12 |
11
|
imp |
|- ( ( N e. _om /\ ( y = <. z , (/) >. /\ <. z , (/) >. e. ( ( (/) Sat (/) ) ` N ) ) ) -> z e. ( Fmla ` N ) ) |
| 13 |
|
vex |
|- z e. _V |
| 14 |
|
0ex |
|- (/) e. _V |
| 15 |
13 14
|
op1std |
|- ( y = <. z , (/) >. -> ( 1st ` y ) = z ) |
| 16 |
15
|
eleq1d |
|- ( y = <. z , (/) >. -> ( ( 1st ` y ) e. ( Fmla ` N ) <-> z e. ( Fmla ` N ) ) ) |
| 17 |
16
|
ad2antrl |
|- ( ( N e. _om /\ ( y = <. z , (/) >. /\ <. z , (/) >. e. ( ( (/) Sat (/) ) ` N ) ) ) -> ( ( 1st ` y ) e. ( Fmla ` N ) <-> z e. ( Fmla ` N ) ) ) |
| 18 |
12 17
|
mpbird |
|- ( ( N e. _om /\ ( y = <. z , (/) >. /\ <. z , (/) >. e. ( ( (/) Sat (/) ) ` N ) ) ) -> ( 1st ` y ) e. ( Fmla ` N ) ) |
| 19 |
18
|
3adant3 |
|- ( ( N e. _om /\ ( y = <. z , (/) >. /\ <. z , (/) >. e. ( ( (/) Sat (/) ) ` N ) ) /\ ( E. w e. ( ( (/) Sat (/) ) ` N ) x = ( ( 1st ` y ) |g ( 1st ` w ) ) \/ E. i e. _om x = A.g i ( 1st ` y ) ) ) -> ( 1st ` y ) e. ( Fmla ` N ) ) |
| 20 |
|
oveq1 |
|- ( u = ( 1st ` y ) -> ( u |g v ) = ( ( 1st ` y ) |g v ) ) |
| 21 |
20
|
eqeq2d |
|- ( u = ( 1st ` y ) -> ( x = ( u |g v ) <-> x = ( ( 1st ` y ) |g v ) ) ) |
| 22 |
21
|
rexbidv |
|- ( u = ( 1st ` y ) -> ( E. v e. ( Fmla ` N ) x = ( u |g v ) <-> E. v e. ( Fmla ` N ) x = ( ( 1st ` y ) |g v ) ) ) |
| 23 |
|
eqidd |
|- ( u = ( 1st ` y ) -> i = i ) |
| 24 |
|
id |
|- ( u = ( 1st ` y ) -> u = ( 1st ` y ) ) |
| 25 |
23 24
|
goaleq12d |
|- ( u = ( 1st ` y ) -> A.g i u = A.g i ( 1st ` y ) ) |
| 26 |
25
|
eqeq2d |
|- ( u = ( 1st ` y ) -> ( x = A.g i u <-> x = A.g i ( 1st ` y ) ) ) |
| 27 |
26
|
rexbidv |
|- ( u = ( 1st ` y ) -> ( E. i e. _om x = A.g i u <-> E. i e. _om x = A.g i ( 1st ` y ) ) ) |
| 28 |
22 27
|
orbi12d |
|- ( u = ( 1st ` y ) -> ( ( E. v e. ( Fmla ` N ) x = ( u |g v ) \/ E. i e. _om x = A.g i u ) <-> ( E. v e. ( Fmla ` N ) x = ( ( 1st ` y ) |g v ) \/ E. i e. _om x = A.g i ( 1st ` y ) ) ) ) |
| 29 |
28
|
adantl |
|- ( ( ( N e. _om /\ ( y = <. z , (/) >. /\ <. z , (/) >. e. ( ( (/) Sat (/) ) ` N ) ) /\ ( E. w e. ( ( (/) Sat (/) ) ` N ) x = ( ( 1st ` y ) |g ( 1st ` w ) ) \/ E. i e. _om x = A.g i ( 1st ` y ) ) ) /\ u = ( 1st ` y ) ) -> ( ( E. v e. ( Fmla ` N ) x = ( u |g v ) \/ E. i e. _om x = A.g i u ) <-> ( E. v e. ( Fmla ` N ) x = ( ( 1st ` y ) |g v ) \/ E. i e. _om x = A.g i ( 1st ` y ) ) ) ) |
| 30 |
2
|
satf0op |
|- ( N e. _om -> ( w e. ( ( (/) Sat (/) ) ` N ) <-> E. y ( w = <. y , (/) >. /\ <. y , (/) >. e. ( ( (/) Sat (/) ) ` N ) ) ) ) |
| 31 |
|
fmlafvel |
|- ( N e. _om -> ( y e. ( Fmla ` N ) <-> <. y , (/) >. e. ( ( (/) Sat (/) ) ` N ) ) ) |
| 32 |
31
|
biimprd |
|- ( N e. _om -> ( <. y , (/) >. e. ( ( (/) Sat (/) ) ` N ) -> y e. ( Fmla ` N ) ) ) |
| 33 |
32
|
adantld |
|- ( N e. _om -> ( ( w = <. y , (/) >. /\ <. y , (/) >. e. ( ( (/) Sat (/) ) ` N ) ) -> y e. ( Fmla ` N ) ) ) |
| 34 |
33
|
imp |
|- ( ( N e. _om /\ ( w = <. y , (/) >. /\ <. y , (/) >. e. ( ( (/) Sat (/) ) ` N ) ) ) -> y e. ( Fmla ` N ) ) |
| 35 |
|
vex |
|- y e. _V |
| 36 |
35 14
|
op1std |
|- ( w = <. y , (/) >. -> ( 1st ` w ) = y ) |
| 37 |
36
|
eleq1d |
|- ( w = <. y , (/) >. -> ( ( 1st ` w ) e. ( Fmla ` N ) <-> y e. ( Fmla ` N ) ) ) |
| 38 |
37
|
ad2antrl |
|- ( ( N e. _om /\ ( w = <. y , (/) >. /\ <. y , (/) >. e. ( ( (/) Sat (/) ) ` N ) ) ) -> ( ( 1st ` w ) e. ( Fmla ` N ) <-> y e. ( Fmla ` N ) ) ) |
| 39 |
34 38
|
mpbird |
|- ( ( N e. _om /\ ( w = <. y , (/) >. /\ <. y , (/) >. e. ( ( (/) Sat (/) ) ` N ) ) ) -> ( 1st ` w ) e. ( Fmla ` N ) ) |
| 40 |
39
|
adantr |
|- ( ( ( N e. _om /\ ( w = <. y , (/) >. /\ <. y , (/) >. e. ( ( (/) Sat (/) ) ` N ) ) ) /\ x = ( z |g ( 1st ` w ) ) ) -> ( 1st ` w ) e. ( Fmla ` N ) ) |
| 41 |
|
oveq2 |
|- ( v = ( 1st ` w ) -> ( z |g v ) = ( z |g ( 1st ` w ) ) ) |
| 42 |
41
|
eqeq2d |
|- ( v = ( 1st ` w ) -> ( x = ( z |g v ) <-> x = ( z |g ( 1st ` w ) ) ) ) |
| 43 |
42
|
adantl |
|- ( ( ( ( N e. _om /\ ( w = <. y , (/) >. /\ <. y , (/) >. e. ( ( (/) Sat (/) ) ` N ) ) ) /\ x = ( z |g ( 1st ` w ) ) ) /\ v = ( 1st ` w ) ) -> ( x = ( z |g v ) <-> x = ( z |g ( 1st ` w ) ) ) ) |
| 44 |
|
simpr |
|- ( ( ( N e. _om /\ ( w = <. y , (/) >. /\ <. y , (/) >. e. ( ( (/) Sat (/) ) ` N ) ) ) /\ x = ( z |g ( 1st ` w ) ) ) -> x = ( z |g ( 1st ` w ) ) ) |
| 45 |
40 43 44
|
rspcedvd |
|- ( ( ( N e. _om /\ ( w = <. y , (/) >. /\ <. y , (/) >. e. ( ( (/) Sat (/) ) ` N ) ) ) /\ x = ( z |g ( 1st ` w ) ) ) -> E. v e. ( Fmla ` N ) x = ( z |g v ) ) |
| 46 |
45
|
exp31 |
|- ( N e. _om -> ( ( w = <. y , (/) >. /\ <. y , (/) >. e. ( ( (/) Sat (/) ) ` N ) ) -> ( x = ( z |g ( 1st ` w ) ) -> E. v e. ( Fmla ` N ) x = ( z |g v ) ) ) ) |
| 47 |
46
|
exlimdv |
|- ( N e. _om -> ( E. y ( w = <. y , (/) >. /\ <. y , (/) >. e. ( ( (/) Sat (/) ) ` N ) ) -> ( x = ( z |g ( 1st ` w ) ) -> E. v e. ( Fmla ` N ) x = ( z |g v ) ) ) ) |
| 48 |
30 47
|
sylbid |
|- ( N e. _om -> ( w e. ( ( (/) Sat (/) ) ` N ) -> ( x = ( z |g ( 1st ` w ) ) -> E. v e. ( Fmla ` N ) x = ( z |g v ) ) ) ) |
| 49 |
48
|
rexlimdv |
|- ( N e. _om -> ( E. w e. ( ( (/) Sat (/) ) ` N ) x = ( z |g ( 1st ` w ) ) -> E. v e. ( Fmla ` N ) x = ( z |g v ) ) ) |
| 50 |
49
|
adantr |
|- ( ( N e. _om /\ ( y = <. z , (/) >. /\ <. z , (/) >. e. ( ( (/) Sat (/) ) ` N ) ) ) -> ( E. w e. ( ( (/) Sat (/) ) ` N ) x = ( z |g ( 1st ` w ) ) -> E. v e. ( Fmla ` N ) x = ( z |g v ) ) ) |
| 51 |
15
|
oveq1d |
|- ( y = <. z , (/) >. -> ( ( 1st ` y ) |g ( 1st ` w ) ) = ( z |g ( 1st ` w ) ) ) |
| 52 |
51
|
eqeq2d |
|- ( y = <. z , (/) >. -> ( x = ( ( 1st ` y ) |g ( 1st ` w ) ) <-> x = ( z |g ( 1st ` w ) ) ) ) |
| 53 |
52
|
rexbidv |
|- ( y = <. z , (/) >. -> ( E. w e. ( ( (/) Sat (/) ) ` N ) x = ( ( 1st ` y ) |g ( 1st ` w ) ) <-> E. w e. ( ( (/) Sat (/) ) ` N ) x = ( z |g ( 1st ` w ) ) ) ) |
| 54 |
15
|
oveq1d |
|- ( y = <. z , (/) >. -> ( ( 1st ` y ) |g v ) = ( z |g v ) ) |
| 55 |
54
|
eqeq2d |
|- ( y = <. z , (/) >. -> ( x = ( ( 1st ` y ) |g v ) <-> x = ( z |g v ) ) ) |
| 56 |
55
|
rexbidv |
|- ( y = <. z , (/) >. -> ( E. v e. ( Fmla ` N ) x = ( ( 1st ` y ) |g v ) <-> E. v e. ( Fmla ` N ) x = ( z |g v ) ) ) |
| 57 |
53 56
|
imbi12d |
|- ( y = <. z , (/) >. -> ( ( E. w e. ( ( (/) Sat (/) ) ` N ) x = ( ( 1st ` y ) |g ( 1st ` w ) ) -> E. v e. ( Fmla ` N ) x = ( ( 1st ` y ) |g v ) ) <-> ( E. w e. ( ( (/) Sat (/) ) ` N ) x = ( z |g ( 1st ` w ) ) -> E. v e. ( Fmla ` N ) x = ( z |g v ) ) ) ) |
| 58 |
57
|
ad2antrl |
|- ( ( N e. _om /\ ( y = <. z , (/) >. /\ <. z , (/) >. e. ( ( (/) Sat (/) ) ` N ) ) ) -> ( ( E. w e. ( ( (/) Sat (/) ) ` N ) x = ( ( 1st ` y ) |g ( 1st ` w ) ) -> E. v e. ( Fmla ` N ) x = ( ( 1st ` y ) |g v ) ) <-> ( E. w e. ( ( (/) Sat (/) ) ` N ) x = ( z |g ( 1st ` w ) ) -> E. v e. ( Fmla ` N ) x = ( z |g v ) ) ) ) |
| 59 |
50 58
|
mpbird |
|- ( ( N e. _om /\ ( y = <. z , (/) >. /\ <. z , (/) >. e. ( ( (/) Sat (/) ) ` N ) ) ) -> ( E. w e. ( ( (/) Sat (/) ) ` N ) x = ( ( 1st ` y ) |g ( 1st ` w ) ) -> E. v e. ( Fmla ` N ) x = ( ( 1st ` y ) |g v ) ) ) |
| 60 |
59
|
orim1d |
|- ( ( N e. _om /\ ( y = <. z , (/) >. /\ <. z , (/) >. e. ( ( (/) Sat (/) ) ` N ) ) ) -> ( ( E. w e. ( ( (/) Sat (/) ) ` N ) x = ( ( 1st ` y ) |g ( 1st ` w ) ) \/ E. i e. _om x = A.g i ( 1st ` y ) ) -> ( E. v e. ( Fmla ` N ) x = ( ( 1st ` y ) |g v ) \/ E. i e. _om x = A.g i ( 1st ` y ) ) ) ) |
| 61 |
60
|
3impia |
|- ( ( N e. _om /\ ( y = <. z , (/) >. /\ <. z , (/) >. e. ( ( (/) Sat (/) ) ` N ) ) /\ ( E. w e. ( ( (/) Sat (/) ) ` N ) x = ( ( 1st ` y ) |g ( 1st ` w ) ) \/ E. i e. _om x = A.g i ( 1st ` y ) ) ) -> ( E. v e. ( Fmla ` N ) x = ( ( 1st ` y ) |g v ) \/ E. i e. _om x = A.g i ( 1st ` y ) ) ) |
| 62 |
19 29 61
|
rspcedvd |
|- ( ( N e. _om /\ ( y = <. z , (/) >. /\ <. z , (/) >. e. ( ( (/) Sat (/) ) ` N ) ) /\ ( E. w e. ( ( (/) Sat (/) ) ` N ) x = ( ( 1st ` y ) |g ( 1st ` w ) ) \/ E. i e. _om x = A.g i ( 1st ` y ) ) ) -> E. u e. ( Fmla ` N ) ( E. v e. ( Fmla ` N ) x = ( u |g v ) \/ E. i e. _om x = A.g i u ) ) |
| 63 |
62
|
3exp |
|- ( N e. _om -> ( ( y = <. z , (/) >. /\ <. z , (/) >. e. ( ( (/) Sat (/) ) ` N ) ) -> ( ( E. w e. ( ( (/) Sat (/) ) ` N ) x = ( ( 1st ` y ) |g ( 1st ` w ) ) \/ E. i e. _om x = A.g i ( 1st ` y ) ) -> E. u e. ( Fmla ` N ) ( E. v e. ( Fmla ` N ) x = ( u |g v ) \/ E. i e. _om x = A.g i u ) ) ) ) |
| 64 |
63
|
exlimdv |
|- ( N e. _om -> ( E. z ( y = <. z , (/) >. /\ <. z , (/) >. e. ( ( (/) Sat (/) ) ` N ) ) -> ( ( E. w e. ( ( (/) Sat (/) ) ` N ) x = ( ( 1st ` y ) |g ( 1st ` w ) ) \/ E. i e. _om x = A.g i ( 1st ` y ) ) -> E. u e. ( Fmla ` N ) ( E. v e. ( Fmla ` N ) x = ( u |g v ) \/ E. i e. _om x = A.g i u ) ) ) ) |
| 65 |
8 64
|
syl7bi |
|- ( N e. _om -> ( E. z ( y = <. z , (/) >. /\ <. z , (/) >. e. ( ( (/) Sat (/) ) ` N ) ) -> ( ( E. z e. ( ( (/) Sat (/) ) ` N ) x = ( ( 1st ` y ) |g ( 1st ` z ) ) \/ E. i e. _om x = A.g i ( 1st ` y ) ) -> E. u e. ( Fmla ` N ) ( E. v e. ( Fmla ` N ) x = ( u |g v ) \/ E. i e. _om x = A.g i u ) ) ) ) |
| 66 |
3 65
|
sylbid |
|- ( N e. _om -> ( y e. ( ( (/) Sat (/) ) ` N ) -> ( ( E. z e. ( ( (/) Sat (/) ) ` N ) x = ( ( 1st ` y ) |g ( 1st ` z ) ) \/ E. i e. _om x = A.g i ( 1st ` y ) ) -> E. u e. ( Fmla ` N ) ( E. v e. ( Fmla ` N ) x = ( u |g v ) \/ E. i e. _om x = A.g i u ) ) ) ) |
| 67 |
66
|
rexlimdv |
|- ( N e. _om -> ( E. y e. ( ( (/) Sat (/) ) ` N ) ( E. z e. ( ( (/) Sat (/) ) ` N ) x = ( ( 1st ` y ) |g ( 1st ` z ) ) \/ E. i e. _om x = A.g i ( 1st ` y ) ) -> E. u e. ( Fmla ` N ) ( E. v e. ( Fmla ` N ) x = ( u |g v ) \/ E. i e. _om x = A.g i u ) ) ) |
| 68 |
|
fmlafvel |
|- ( N e. _om -> ( u e. ( Fmla ` N ) <-> <. u , (/) >. e. ( ( (/) Sat (/) ) ` N ) ) ) |
| 69 |
68
|
biimpa |
|- ( ( N e. _om /\ u e. ( Fmla ` N ) ) -> <. u , (/) >. e. ( ( (/) Sat (/) ) ` N ) ) |
| 70 |
69
|
adantr |
|- ( ( ( N e. _om /\ u e. ( Fmla ` N ) ) /\ ( E. v e. ( Fmla ` N ) x = ( u |g v ) \/ E. i e. _om x = A.g i u ) ) -> <. u , (/) >. e. ( ( (/) Sat (/) ) ` N ) ) |
| 71 |
|
vex |
|- u e. _V |
| 72 |
71 14
|
op1std |
|- ( y = <. u , (/) >. -> ( 1st ` y ) = u ) |
| 73 |
72
|
oveq1d |
|- ( y = <. u , (/) >. -> ( ( 1st ` y ) |g ( 1st ` z ) ) = ( u |g ( 1st ` z ) ) ) |
| 74 |
73
|
eqeq2d |
|- ( y = <. u , (/) >. -> ( x = ( ( 1st ` y ) |g ( 1st ` z ) ) <-> x = ( u |g ( 1st ` z ) ) ) ) |
| 75 |
74
|
rexbidv |
|- ( y = <. u , (/) >. -> ( E. z e. ( ( (/) Sat (/) ) ` N ) x = ( ( 1st ` y ) |g ( 1st ` z ) ) <-> E. z e. ( ( (/) Sat (/) ) ` N ) x = ( u |g ( 1st ` z ) ) ) ) |
| 76 |
|
eqidd |
|- ( y = <. u , (/) >. -> i = i ) |
| 77 |
76 72
|
goaleq12d |
|- ( y = <. u , (/) >. -> A.g i ( 1st ` y ) = A.g i u ) |
| 78 |
77
|
eqeq2d |
|- ( y = <. u , (/) >. -> ( x = A.g i ( 1st ` y ) <-> x = A.g i u ) ) |
| 79 |
78
|
rexbidv |
|- ( y = <. u , (/) >. -> ( E. i e. _om x = A.g i ( 1st ` y ) <-> E. i e. _om x = A.g i u ) ) |
| 80 |
75 79
|
orbi12d |
|- ( y = <. u , (/) >. -> ( ( E. z e. ( ( (/) Sat (/) ) ` N ) x = ( ( 1st ` y ) |g ( 1st ` z ) ) \/ E. i e. _om x = A.g i ( 1st ` y ) ) <-> ( E. z e. ( ( (/) Sat (/) ) ` N ) x = ( u |g ( 1st ` z ) ) \/ E. i e. _om x = A.g i u ) ) ) |
| 81 |
80
|
adantl |
|- ( ( ( ( N e. _om /\ u e. ( Fmla ` N ) ) /\ ( E. v e. ( Fmla ` N ) x = ( u |g v ) \/ E. i e. _om x = A.g i u ) ) /\ y = <. u , (/) >. ) -> ( ( E. z e. ( ( (/) Sat (/) ) ` N ) x = ( ( 1st ` y ) |g ( 1st ` z ) ) \/ E. i e. _om x = A.g i ( 1st ` y ) ) <-> ( E. z e. ( ( (/) Sat (/) ) ` N ) x = ( u |g ( 1st ` z ) ) \/ E. i e. _om x = A.g i u ) ) ) |
| 82 |
|
fmlafvel |
|- ( N e. _om -> ( v e. ( Fmla ` N ) <-> <. v , (/) >. e. ( ( (/) Sat (/) ) ` N ) ) ) |
| 83 |
82
|
biimpd |
|- ( N e. _om -> ( v e. ( Fmla ` N ) -> <. v , (/) >. e. ( ( (/) Sat (/) ) ` N ) ) ) |
| 84 |
83
|
adantr |
|- ( ( N e. _om /\ u e. ( Fmla ` N ) ) -> ( v e. ( Fmla ` N ) -> <. v , (/) >. e. ( ( (/) Sat (/) ) ` N ) ) ) |
| 85 |
84
|
imp |
|- ( ( ( N e. _om /\ u e. ( Fmla ` N ) ) /\ v e. ( Fmla ` N ) ) -> <. v , (/) >. e. ( ( (/) Sat (/) ) ` N ) ) |
| 86 |
85
|
adantr |
|- ( ( ( ( N e. _om /\ u e. ( Fmla ` N ) ) /\ v e. ( Fmla ` N ) ) /\ x = ( u |g v ) ) -> <. v , (/) >. e. ( ( (/) Sat (/) ) ` N ) ) |
| 87 |
|
vex |
|- v e. _V |
| 88 |
87 14
|
op1std |
|- ( z = <. v , (/) >. -> ( 1st ` z ) = v ) |
| 89 |
88
|
oveq2d |
|- ( z = <. v , (/) >. -> ( u |g ( 1st ` z ) ) = ( u |g v ) ) |
| 90 |
89
|
eqeq2d |
|- ( z = <. v , (/) >. -> ( x = ( u |g ( 1st ` z ) ) <-> x = ( u |g v ) ) ) |
| 91 |
90
|
adantl |
|- ( ( ( ( ( N e. _om /\ u e. ( Fmla ` N ) ) /\ v e. ( Fmla ` N ) ) /\ x = ( u |g v ) ) /\ z = <. v , (/) >. ) -> ( x = ( u |g ( 1st ` z ) ) <-> x = ( u |g v ) ) ) |
| 92 |
|
simpr |
|- ( ( ( ( N e. _om /\ u e. ( Fmla ` N ) ) /\ v e. ( Fmla ` N ) ) /\ x = ( u |g v ) ) -> x = ( u |g v ) ) |
| 93 |
86 91 92
|
rspcedvd |
|- ( ( ( ( N e. _om /\ u e. ( Fmla ` N ) ) /\ v e. ( Fmla ` N ) ) /\ x = ( u |g v ) ) -> E. z e. ( ( (/) Sat (/) ) ` N ) x = ( u |g ( 1st ` z ) ) ) |
| 94 |
93
|
rexlimdva2 |
|- ( ( N e. _om /\ u e. ( Fmla ` N ) ) -> ( E. v e. ( Fmla ` N ) x = ( u |g v ) -> E. z e. ( ( (/) Sat (/) ) ` N ) x = ( u |g ( 1st ` z ) ) ) ) |
| 95 |
94
|
orim1d |
|- ( ( N e. _om /\ u e. ( Fmla ` N ) ) -> ( ( E. v e. ( Fmla ` N ) x = ( u |g v ) \/ E. i e. _om x = A.g i u ) -> ( E. z e. ( ( (/) Sat (/) ) ` N ) x = ( u |g ( 1st ` z ) ) \/ E. i e. _om x = A.g i u ) ) ) |
| 96 |
95
|
imp |
|- ( ( ( N e. _om /\ u e. ( Fmla ` N ) ) /\ ( E. v e. ( Fmla ` N ) x = ( u |g v ) \/ E. i e. _om x = A.g i u ) ) -> ( E. z e. ( ( (/) Sat (/) ) ` N ) x = ( u |g ( 1st ` z ) ) \/ E. i e. _om x = A.g i u ) ) |
| 97 |
70 81 96
|
rspcedvd |
|- ( ( ( N e. _om /\ u e. ( Fmla ` N ) ) /\ ( E. v e. ( Fmla ` N ) x = ( u |g v ) \/ E. i e. _om x = A.g i u ) ) -> E. y e. ( ( (/) Sat (/) ) ` N ) ( E. z e. ( ( (/) Sat (/) ) ` N ) x = ( ( 1st ` y ) |g ( 1st ` z ) ) \/ E. i e. _om x = A.g i ( 1st ` y ) ) ) |
| 98 |
97
|
rexlimdva2 |
|- ( N e. _om -> ( E. u e. ( Fmla ` N ) ( E. v e. ( Fmla ` N ) x = ( u |g v ) \/ E. i e. _om x = A.g i u ) -> E. y e. ( ( (/) Sat (/) ) ` N ) ( E. z e. ( ( (/) Sat (/) ) ` N ) x = ( ( 1st ` y ) |g ( 1st ` z ) ) \/ E. i e. _om x = A.g i ( 1st ` y ) ) ) ) |
| 99 |
67 98
|
impbid |
|- ( N e. _om -> ( E. y e. ( ( (/) Sat (/) ) ` N ) ( E. z e. ( ( (/) Sat (/) ) ` N ) x = ( ( 1st ` y ) |g ( 1st ` z ) ) \/ E. i e. _om x = A.g i ( 1st ` y ) ) <-> E. u e. ( Fmla ` N ) ( E. v e. ( Fmla ` N ) x = ( u |g v ) \/ E. i e. _om x = A.g i u ) ) ) |
| 100 |
99
|
abbidv |
|- ( N e. _om -> { x | E. y e. ( ( (/) Sat (/) ) ` N ) ( E. z e. ( ( (/) Sat (/) ) ` N ) x = ( ( 1st ` y ) |g ( 1st ` z ) ) \/ E. i e. _om x = A.g i ( 1st ` y ) ) } = { x | E. u e. ( Fmla ` N ) ( E. v e. ( Fmla ` N ) x = ( u |g v ) \/ E. i e. _om x = A.g i u ) } ) |
| 101 |
100
|
uneq2d |
|- ( N e. _om -> ( ( Fmla ` N ) u. { x | E. y e. ( ( (/) Sat (/) ) ` N ) ( E. z e. ( ( (/) Sat (/) ) ` N ) x = ( ( 1st ` y ) |g ( 1st ` z ) ) \/ E. i e. _om x = A.g i ( 1st ` y ) ) } ) = ( ( Fmla ` N ) u. { x | E. u e. ( Fmla ` N ) ( E. v e. ( Fmla ` N ) x = ( u |g v ) \/ E. i e. _om x = A.g i u ) } ) ) |
| 102 |
1 101
|
eqtrd |
|- ( N e. _om -> ( Fmla ` suc N ) = ( ( Fmla ` N ) u. { x | E. u e. ( Fmla ` N ) ( E. v e. ( Fmla ` N ) x = ( u |g v ) \/ E. i e. _om x = A.g i u ) } ) ) |