| Step |
Hyp |
Ref |
Expression |
| 1 |
|
df-fmla |
|- Fmla = ( n e. suc _om |-> dom ( ( (/) Sat (/) ) ` n ) ) |
| 2 |
|
fveq2 |
|- ( n = suc N -> ( ( (/) Sat (/) ) ` n ) = ( ( (/) Sat (/) ) ` suc N ) ) |
| 3 |
2
|
dmeqd |
|- ( n = suc N -> dom ( ( (/) Sat (/) ) ` n ) = dom ( ( (/) Sat (/) ) ` suc N ) ) |
| 4 |
|
omsucelsucb |
|- ( N e. _om <-> suc N e. suc _om ) |
| 5 |
4
|
biimpi |
|- ( N e. _om -> suc N e. suc _om ) |
| 6 |
|
fvex |
|- ( ( (/) Sat (/) ) ` suc N ) e. _V |
| 7 |
6
|
dmex |
|- dom ( ( (/) Sat (/) ) ` suc N ) e. _V |
| 8 |
7
|
a1i |
|- ( N e. _om -> dom ( ( (/) Sat (/) ) ` suc N ) e. _V ) |
| 9 |
1 3 5 8
|
fvmptd3 |
|- ( N e. _om -> ( Fmla ` suc N ) = dom ( ( (/) Sat (/) ) ` suc N ) ) |
| 10 |
|
satf0sucom |
|- ( suc N e. suc _om -> ( ( (/) Sat (/) ) ` suc N ) = ( rec ( ( f e. _V |-> ( f u. { <. x , y >. | ( y = (/) /\ E. u e. f ( E. v e. f x = ( ( 1st ` u ) |g ( 1st ` v ) ) \/ E. i e. _om x = A.g i ( 1st ` u ) ) ) } ) ) , { <. x , y >. | ( y = (/) /\ E. i e. _om E. j e. _om x = ( i e.g j ) ) } ) ` suc N ) ) |
| 11 |
5 10
|
syl |
|- ( N e. _om -> ( ( (/) Sat (/) ) ` suc N ) = ( rec ( ( f e. _V |-> ( f u. { <. x , y >. | ( y = (/) /\ E. u e. f ( E. v e. f x = ( ( 1st ` u ) |g ( 1st ` v ) ) \/ E. i e. _om x = A.g i ( 1st ` u ) ) ) } ) ) , { <. x , y >. | ( y = (/) /\ E. i e. _om E. j e. _om x = ( i e.g j ) ) } ) ` suc N ) ) |
| 12 |
|
nnon |
|- ( N e. _om -> N e. On ) |
| 13 |
|
rdgsuc |
|- ( N e. On -> ( rec ( ( f e. _V |-> ( f u. { <. x , y >. | ( y = (/) /\ E. u e. f ( E. v e. f x = ( ( 1st ` u ) |g ( 1st ` v ) ) \/ E. i e. _om x = A.g i ( 1st ` u ) ) ) } ) ) , { <. x , y >. | ( y = (/) /\ E. i e. _om E. j e. _om x = ( i e.g j ) ) } ) ` suc N ) = ( ( f e. _V |-> ( f u. { <. x , y >. | ( y = (/) /\ E. u e. f ( E. v e. f x = ( ( 1st ` u ) |g ( 1st ` v ) ) \/ E. i e. _om x = A.g i ( 1st ` u ) ) ) } ) ) ` ( rec ( ( f e. _V |-> ( f u. { <. x , y >. | ( y = (/) /\ E. u e. f ( E. v e. f x = ( ( 1st ` u ) |g ( 1st ` v ) ) \/ E. i e. _om x = A.g i ( 1st ` u ) ) ) } ) ) , { <. x , y >. | ( y = (/) /\ E. i e. _om E. j e. _om x = ( i e.g j ) ) } ) ` N ) ) ) |
| 14 |
12 13
|
syl |
|- ( N e. _om -> ( rec ( ( f e. _V |-> ( f u. { <. x , y >. | ( y = (/) /\ E. u e. f ( E. v e. f x = ( ( 1st ` u ) |g ( 1st ` v ) ) \/ E. i e. _om x = A.g i ( 1st ` u ) ) ) } ) ) , { <. x , y >. | ( y = (/) /\ E. i e. _om E. j e. _om x = ( i e.g j ) ) } ) ` suc N ) = ( ( f e. _V |-> ( f u. { <. x , y >. | ( y = (/) /\ E. u e. f ( E. v e. f x = ( ( 1st ` u ) |g ( 1st ` v ) ) \/ E. i e. _om x = A.g i ( 1st ` u ) ) ) } ) ) ` ( rec ( ( f e. _V |-> ( f u. { <. x , y >. | ( y = (/) /\ E. u e. f ( E. v e. f x = ( ( 1st ` u ) |g ( 1st ` v ) ) \/ E. i e. _om x = A.g i ( 1st ` u ) ) ) } ) ) , { <. x , y >. | ( y = (/) /\ E. i e. _om E. j e. _om x = ( i e.g j ) ) } ) ` N ) ) ) |
| 15 |
11 14
|
eqtrd |
|- ( N e. _om -> ( ( (/) Sat (/) ) ` suc N ) = ( ( f e. _V |-> ( f u. { <. x , y >. | ( y = (/) /\ E. u e. f ( E. v e. f x = ( ( 1st ` u ) |g ( 1st ` v ) ) \/ E. i e. _om x = A.g i ( 1st ` u ) ) ) } ) ) ` ( rec ( ( f e. _V |-> ( f u. { <. x , y >. | ( y = (/) /\ E. u e. f ( E. v e. f x = ( ( 1st ` u ) |g ( 1st ` v ) ) \/ E. i e. _om x = A.g i ( 1st ` u ) ) ) } ) ) , { <. x , y >. | ( y = (/) /\ E. i e. _om E. j e. _om x = ( i e.g j ) ) } ) ` N ) ) ) |
| 16 |
15
|
dmeqd |
|- ( N e. _om -> dom ( ( (/) Sat (/) ) ` suc N ) = dom ( ( f e. _V |-> ( f u. { <. x , y >. | ( y = (/) /\ E. u e. f ( E. v e. f x = ( ( 1st ` u ) |g ( 1st ` v ) ) \/ E. i e. _om x = A.g i ( 1st ` u ) ) ) } ) ) ` ( rec ( ( f e. _V |-> ( f u. { <. x , y >. | ( y = (/) /\ E. u e. f ( E. v e. f x = ( ( 1st ` u ) |g ( 1st ` v ) ) \/ E. i e. _om x = A.g i ( 1st ` u ) ) ) } ) ) , { <. x , y >. | ( y = (/) /\ E. i e. _om E. j e. _om x = ( i e.g j ) ) } ) ` N ) ) ) |
| 17 |
|
elelsuc |
|- ( N e. _om -> N e. suc _om ) |
| 18 |
|
satf0sucom |
|- ( N e. suc _om -> ( ( (/) Sat (/) ) ` N ) = ( rec ( ( f e. _V |-> ( f u. { <. x , y >. | ( y = (/) /\ E. u e. f ( E. v e. f x = ( ( 1st ` u ) |g ( 1st ` v ) ) \/ E. i e. _om x = A.g i ( 1st ` u ) ) ) } ) ) , { <. x , y >. | ( y = (/) /\ E. i e. _om E. j e. _om x = ( i e.g j ) ) } ) ` N ) ) |
| 19 |
18
|
eqcomd |
|- ( N e. suc _om -> ( rec ( ( f e. _V |-> ( f u. { <. x , y >. | ( y = (/) /\ E. u e. f ( E. v e. f x = ( ( 1st ` u ) |g ( 1st ` v ) ) \/ E. i e. _om x = A.g i ( 1st ` u ) ) ) } ) ) , { <. x , y >. | ( y = (/) /\ E. i e. _om E. j e. _om x = ( i e.g j ) ) } ) ` N ) = ( ( (/) Sat (/) ) ` N ) ) |
| 20 |
17 19
|
syl |
|- ( N e. _om -> ( rec ( ( f e. _V |-> ( f u. { <. x , y >. | ( y = (/) /\ E. u e. f ( E. v e. f x = ( ( 1st ` u ) |g ( 1st ` v ) ) \/ E. i e. _om x = A.g i ( 1st ` u ) ) ) } ) ) , { <. x , y >. | ( y = (/) /\ E. i e. _om E. j e. _om x = ( i e.g j ) ) } ) ` N ) = ( ( (/) Sat (/) ) ` N ) ) |
| 21 |
20
|
fveq2d |
|- ( N e. _om -> ( ( f e. _V |-> ( f u. { <. x , y >. | ( y = (/) /\ E. u e. f ( E. v e. f x = ( ( 1st ` u ) |g ( 1st ` v ) ) \/ E. i e. _om x = A.g i ( 1st ` u ) ) ) } ) ) ` ( rec ( ( f e. _V |-> ( f u. { <. x , y >. | ( y = (/) /\ E. u e. f ( E. v e. f x = ( ( 1st ` u ) |g ( 1st ` v ) ) \/ E. i e. _om x = A.g i ( 1st ` u ) ) ) } ) ) , { <. x , y >. | ( y = (/) /\ E. i e. _om E. j e. _om x = ( i e.g j ) ) } ) ` N ) ) = ( ( f e. _V |-> ( f u. { <. x , y >. | ( y = (/) /\ E. u e. f ( E. v e. f x = ( ( 1st ` u ) |g ( 1st ` v ) ) \/ E. i e. _om x = A.g i ( 1st ` u ) ) ) } ) ) ` ( ( (/) Sat (/) ) ` N ) ) ) |
| 22 |
|
eqidd |
|- ( N e. _om -> ( f e. _V |-> ( f u. { <. x , y >. | ( y = (/) /\ E. u e. f ( E. v e. f x = ( ( 1st ` u ) |g ( 1st ` v ) ) \/ E. i e. _om x = A.g i ( 1st ` u ) ) ) } ) ) = ( f e. _V |-> ( f u. { <. x , y >. | ( y = (/) /\ E. u e. f ( E. v e. f x = ( ( 1st ` u ) |g ( 1st ` v ) ) \/ E. i e. _om x = A.g i ( 1st ` u ) ) ) } ) ) ) |
| 23 |
|
id |
|- ( f = ( ( (/) Sat (/) ) ` N ) -> f = ( ( (/) Sat (/) ) ` N ) ) |
| 24 |
|
rexeq |
|- ( f = ( ( (/) Sat (/) ) ` N ) -> ( E. v e. f x = ( ( 1st ` u ) |g ( 1st ` v ) ) <-> E. v e. ( ( (/) Sat (/) ) ` N ) x = ( ( 1st ` u ) |g ( 1st ` v ) ) ) ) |
| 25 |
24
|
orbi1d |
|- ( f = ( ( (/) Sat (/) ) ` N ) -> ( ( E. v e. f x = ( ( 1st ` u ) |g ( 1st ` v ) ) \/ E. i e. _om x = A.g i ( 1st ` u ) ) <-> ( E. v e. ( ( (/) Sat (/) ) ` N ) x = ( ( 1st ` u ) |g ( 1st ` v ) ) \/ E. i e. _om x = A.g i ( 1st ` u ) ) ) ) |
| 26 |
25
|
rexeqbi1dv |
|- ( f = ( ( (/) Sat (/) ) ` N ) -> ( E. u e. f ( E. v e. f x = ( ( 1st ` u ) |g ( 1st ` v ) ) \/ E. i e. _om x = A.g i ( 1st ` u ) ) <-> E. u e. ( ( (/) Sat (/) ) ` N ) ( E. v e. ( ( (/) Sat (/) ) ` N ) x = ( ( 1st ` u ) |g ( 1st ` v ) ) \/ E. i e. _om x = A.g i ( 1st ` u ) ) ) ) |
| 27 |
26
|
anbi2d |
|- ( f = ( ( (/) Sat (/) ) ` N ) -> ( ( y = (/) /\ E. u e. f ( E. v e. f x = ( ( 1st ` u ) |g ( 1st ` v ) ) \/ E. i e. _om x = A.g i ( 1st ` u ) ) ) <-> ( y = (/) /\ E. u e. ( ( (/) Sat (/) ) ` N ) ( E. v e. ( ( (/) Sat (/) ) ` N ) x = ( ( 1st ` u ) |g ( 1st ` v ) ) \/ E. i e. _om x = A.g i ( 1st ` u ) ) ) ) ) |
| 28 |
27
|
opabbidv |
|- ( f = ( ( (/) Sat (/) ) ` N ) -> { <. x , y >. | ( y = (/) /\ E. u e. f ( E. v e. f x = ( ( 1st ` u ) |g ( 1st ` v ) ) \/ E. i e. _om x = A.g i ( 1st ` u ) ) ) } = { <. x , y >. | ( y = (/) /\ E. u e. ( ( (/) Sat (/) ) ` N ) ( E. v e. ( ( (/) Sat (/) ) ` N ) x = ( ( 1st ` u ) |g ( 1st ` v ) ) \/ E. i e. _om x = A.g i ( 1st ` u ) ) ) } ) |
| 29 |
23 28
|
uneq12d |
|- ( f = ( ( (/) Sat (/) ) ` N ) -> ( f u. { <. x , y >. | ( y = (/) /\ E. u e. f ( E. v e. f x = ( ( 1st ` u ) |g ( 1st ` v ) ) \/ E. i e. _om x = A.g i ( 1st ` u ) ) ) } ) = ( ( ( (/) Sat (/) ) ` N ) u. { <. x , y >. | ( y = (/) /\ E. u e. ( ( (/) Sat (/) ) ` N ) ( E. v e. ( ( (/) Sat (/) ) ` N ) x = ( ( 1st ` u ) |g ( 1st ` v ) ) \/ E. i e. _om x = A.g i ( 1st ` u ) ) ) } ) ) |
| 30 |
29
|
adantl |
|- ( ( N e. _om /\ f = ( ( (/) Sat (/) ) ` N ) ) -> ( f u. { <. x , y >. | ( y = (/) /\ E. u e. f ( E. v e. f x = ( ( 1st ` u ) |g ( 1st ` v ) ) \/ E. i e. _om x = A.g i ( 1st ` u ) ) ) } ) = ( ( ( (/) Sat (/) ) ` N ) u. { <. x , y >. | ( y = (/) /\ E. u e. ( ( (/) Sat (/) ) ` N ) ( E. v e. ( ( (/) Sat (/) ) ` N ) x = ( ( 1st ` u ) |g ( 1st ` v ) ) \/ E. i e. _om x = A.g i ( 1st ` u ) ) ) } ) ) |
| 31 |
|
fvex |
|- ( ( (/) Sat (/) ) ` N ) e. _V |
| 32 |
31
|
a1i |
|- ( N e. _om -> ( ( (/) Sat (/) ) ` N ) e. _V ) |
| 33 |
|
peano1 |
|- (/) e. _om |
| 34 |
|
eleq1 |
|- ( y = (/) -> ( y e. _om <-> (/) e. _om ) ) |
| 35 |
33 34
|
mpbiri |
|- ( y = (/) -> y e. _om ) |
| 36 |
35
|
adantr |
|- ( ( y = (/) /\ E. u e. ( ( (/) Sat (/) ) ` N ) ( E. v e. ( ( (/) Sat (/) ) ` N ) x = ( ( 1st ` u ) |g ( 1st ` v ) ) \/ E. i e. _om x = A.g i ( 1st ` u ) ) ) -> y e. _om ) |
| 37 |
36
|
pm4.71ri |
|- ( ( y = (/) /\ E. u e. ( ( (/) Sat (/) ) ` N ) ( E. v e. ( ( (/) Sat (/) ) ` N ) x = ( ( 1st ` u ) |g ( 1st ` v ) ) \/ E. i e. _om x = A.g i ( 1st ` u ) ) ) <-> ( y e. _om /\ ( y = (/) /\ E. u e. ( ( (/) Sat (/) ) ` N ) ( E. v e. ( ( (/) Sat (/) ) ` N ) x = ( ( 1st ` u ) |g ( 1st ` v ) ) \/ E. i e. _om x = A.g i ( 1st ` u ) ) ) ) ) |
| 38 |
37
|
opabbii |
|- { <. x , y >. | ( y = (/) /\ E. u e. ( ( (/) Sat (/) ) ` N ) ( E. v e. ( ( (/) Sat (/) ) ` N ) x = ( ( 1st ` u ) |g ( 1st ` v ) ) \/ E. i e. _om x = A.g i ( 1st ` u ) ) ) } = { <. x , y >. | ( y e. _om /\ ( y = (/) /\ E. u e. ( ( (/) Sat (/) ) ` N ) ( E. v e. ( ( (/) Sat (/) ) ` N ) x = ( ( 1st ` u ) |g ( 1st ` v ) ) \/ E. i e. _om x = A.g i ( 1st ` u ) ) ) ) } |
| 39 |
|
omex |
|- _om e. _V |
| 40 |
|
id |
|- ( _om e. _V -> _om e. _V ) |
| 41 |
|
unab |
|- ( { x | E. v e. ( ( (/) Sat (/) ) ` N ) x = ( ( 1st ` u ) |g ( 1st ` v ) ) } u. { x | E. i e. _om x = A.g i ( 1st ` u ) } ) = { x | ( E. v e. ( ( (/) Sat (/) ) ` N ) x = ( ( 1st ` u ) |g ( 1st ` v ) ) \/ E. i e. _om x = A.g i ( 1st ` u ) ) } |
| 42 |
31
|
abrexex |
|- { x | E. v e. ( ( (/) Sat (/) ) ` N ) x = ( ( 1st ` u ) |g ( 1st ` v ) ) } e. _V |
| 43 |
39
|
abrexex |
|- { x | E. i e. _om x = A.g i ( 1st ` u ) } e. _V |
| 44 |
42 43
|
unex |
|- ( { x | E. v e. ( ( (/) Sat (/) ) ` N ) x = ( ( 1st ` u ) |g ( 1st ` v ) ) } u. { x | E. i e. _om x = A.g i ( 1st ` u ) } ) e. _V |
| 45 |
41 44
|
eqeltrri |
|- { x | ( E. v e. ( ( (/) Sat (/) ) ` N ) x = ( ( 1st ` u ) |g ( 1st ` v ) ) \/ E. i e. _om x = A.g i ( 1st ` u ) ) } e. _V |
| 46 |
45
|
a1i |
|- ( ( ( _om e. _V /\ y e. _om ) /\ u e. ( ( (/) Sat (/) ) ` N ) ) -> { x | ( E. v e. ( ( (/) Sat (/) ) ` N ) x = ( ( 1st ` u ) |g ( 1st ` v ) ) \/ E. i e. _om x = A.g i ( 1st ` u ) ) } e. _V ) |
| 47 |
46
|
ralrimiva |
|- ( ( _om e. _V /\ y e. _om ) -> A. u e. ( ( (/) Sat (/) ) ` N ) { x | ( E. v e. ( ( (/) Sat (/) ) ` N ) x = ( ( 1st ` u ) |g ( 1st ` v ) ) \/ E. i e. _om x = A.g i ( 1st ` u ) ) } e. _V ) |
| 48 |
|
abrexex2g |
|- ( ( ( ( (/) Sat (/) ) ` N ) e. _V /\ A. u e. ( ( (/) Sat (/) ) ` N ) { x | ( E. v e. ( ( (/) Sat (/) ) ` N ) x = ( ( 1st ` u ) |g ( 1st ` v ) ) \/ E. i e. _om x = A.g i ( 1st ` u ) ) } e. _V ) -> { x | E. u e. ( ( (/) Sat (/) ) ` N ) ( E. v e. ( ( (/) Sat (/) ) ` N ) x = ( ( 1st ` u ) |g ( 1st ` v ) ) \/ E. i e. _om x = A.g i ( 1st ` u ) ) } e. _V ) |
| 49 |
31 47 48
|
sylancr |
|- ( ( _om e. _V /\ y e. _om ) -> { x | E. u e. ( ( (/) Sat (/) ) ` N ) ( E. v e. ( ( (/) Sat (/) ) ` N ) x = ( ( 1st ` u ) |g ( 1st ` v ) ) \/ E. i e. _om x = A.g i ( 1st ` u ) ) } e. _V ) |
| 50 |
40 49
|
opabex3rd |
|- ( _om e. _V -> { <. x , y >. | ( y e. _om /\ E. u e. ( ( (/) Sat (/) ) ` N ) ( E. v e. ( ( (/) Sat (/) ) ` N ) x = ( ( 1st ` u ) |g ( 1st ` v ) ) \/ E. i e. _om x = A.g i ( 1st ` u ) ) ) } e. _V ) |
| 51 |
39 50
|
ax-mp |
|- { <. x , y >. | ( y e. _om /\ E. u e. ( ( (/) Sat (/) ) ` N ) ( E. v e. ( ( (/) Sat (/) ) ` N ) x = ( ( 1st ` u ) |g ( 1st ` v ) ) \/ E. i e. _om x = A.g i ( 1st ` u ) ) ) } e. _V |
| 52 |
|
simpr |
|- ( ( y = (/) /\ E. u e. ( ( (/) Sat (/) ) ` N ) ( E. v e. ( ( (/) Sat (/) ) ` N ) x = ( ( 1st ` u ) |g ( 1st ` v ) ) \/ E. i e. _om x = A.g i ( 1st ` u ) ) ) -> E. u e. ( ( (/) Sat (/) ) ` N ) ( E. v e. ( ( (/) Sat (/) ) ` N ) x = ( ( 1st ` u ) |g ( 1st ` v ) ) \/ E. i e. _om x = A.g i ( 1st ` u ) ) ) |
| 53 |
52
|
anim2i |
|- ( ( y e. _om /\ ( y = (/) /\ E. u e. ( ( (/) Sat (/) ) ` N ) ( E. v e. ( ( (/) Sat (/) ) ` N ) x = ( ( 1st ` u ) |g ( 1st ` v ) ) \/ E. i e. _om x = A.g i ( 1st ` u ) ) ) ) -> ( y e. _om /\ E. u e. ( ( (/) Sat (/) ) ` N ) ( E. v e. ( ( (/) Sat (/) ) ` N ) x = ( ( 1st ` u ) |g ( 1st ` v ) ) \/ E. i e. _om x = A.g i ( 1st ` u ) ) ) ) |
| 54 |
53
|
ssopab2i |
|- { <. x , y >. | ( y e. _om /\ ( y = (/) /\ E. u e. ( ( (/) Sat (/) ) ` N ) ( E. v e. ( ( (/) Sat (/) ) ` N ) x = ( ( 1st ` u ) |g ( 1st ` v ) ) \/ E. i e. _om x = A.g i ( 1st ` u ) ) ) ) } C_ { <. x , y >. | ( y e. _om /\ E. u e. ( ( (/) Sat (/) ) ` N ) ( E. v e. ( ( (/) Sat (/) ) ` N ) x = ( ( 1st ` u ) |g ( 1st ` v ) ) \/ E. i e. _om x = A.g i ( 1st ` u ) ) ) } |
| 55 |
51 54
|
ssexi |
|- { <. x , y >. | ( y e. _om /\ ( y = (/) /\ E. u e. ( ( (/) Sat (/) ) ` N ) ( E. v e. ( ( (/) Sat (/) ) ` N ) x = ( ( 1st ` u ) |g ( 1st ` v ) ) \/ E. i e. _om x = A.g i ( 1st ` u ) ) ) ) } e. _V |
| 56 |
55
|
a1i |
|- ( N e. _om -> { <. x , y >. | ( y e. _om /\ ( y = (/) /\ E. u e. ( ( (/) Sat (/) ) ` N ) ( E. v e. ( ( (/) Sat (/) ) ` N ) x = ( ( 1st ` u ) |g ( 1st ` v ) ) \/ E. i e. _om x = A.g i ( 1st ` u ) ) ) ) } e. _V ) |
| 57 |
38 56
|
eqeltrid |
|- ( N e. _om -> { <. x , y >. | ( y = (/) /\ E. u e. ( ( (/) Sat (/) ) ` N ) ( E. v e. ( ( (/) Sat (/) ) ` N ) x = ( ( 1st ` u ) |g ( 1st ` v ) ) \/ E. i e. _om x = A.g i ( 1st ` u ) ) ) } e. _V ) |
| 58 |
|
unexg |
|- ( ( ( ( (/) Sat (/) ) ` N ) e. _V /\ { <. x , y >. | ( y = (/) /\ E. u e. ( ( (/) Sat (/) ) ` N ) ( E. v e. ( ( (/) Sat (/) ) ` N ) x = ( ( 1st ` u ) |g ( 1st ` v ) ) \/ E. i e. _om x = A.g i ( 1st ` u ) ) ) } e. _V ) -> ( ( ( (/) Sat (/) ) ` N ) u. { <. x , y >. | ( y = (/) /\ E. u e. ( ( (/) Sat (/) ) ` N ) ( E. v e. ( ( (/) Sat (/) ) ` N ) x = ( ( 1st ` u ) |g ( 1st ` v ) ) \/ E. i e. _om x = A.g i ( 1st ` u ) ) ) } ) e. _V ) |
| 59 |
31 57 58
|
sylancr |
|- ( N e. _om -> ( ( ( (/) Sat (/) ) ` N ) u. { <. x , y >. | ( y = (/) /\ E. u e. ( ( (/) Sat (/) ) ` N ) ( E. v e. ( ( (/) Sat (/) ) ` N ) x = ( ( 1st ` u ) |g ( 1st ` v ) ) \/ E. i e. _om x = A.g i ( 1st ` u ) ) ) } ) e. _V ) |
| 60 |
22 30 32 59
|
fvmptd |
|- ( N e. _om -> ( ( f e. _V |-> ( f u. { <. x , y >. | ( y = (/) /\ E. u e. f ( E. v e. f x = ( ( 1st ` u ) |g ( 1st ` v ) ) \/ E. i e. _om x = A.g i ( 1st ` u ) ) ) } ) ) ` ( ( (/) Sat (/) ) ` N ) ) = ( ( ( (/) Sat (/) ) ` N ) u. { <. x , y >. | ( y = (/) /\ E. u e. ( ( (/) Sat (/) ) ` N ) ( E. v e. ( ( (/) Sat (/) ) ` N ) x = ( ( 1st ` u ) |g ( 1st ` v ) ) \/ E. i e. _om x = A.g i ( 1st ` u ) ) ) } ) ) |
| 61 |
21 60
|
eqtrd |
|- ( N e. _om -> ( ( f e. _V |-> ( f u. { <. x , y >. | ( y = (/) /\ E. u e. f ( E. v e. f x = ( ( 1st ` u ) |g ( 1st ` v ) ) \/ E. i e. _om x = A.g i ( 1st ` u ) ) ) } ) ) ` ( rec ( ( f e. _V |-> ( f u. { <. x , y >. | ( y = (/) /\ E. u e. f ( E. v e. f x = ( ( 1st ` u ) |g ( 1st ` v ) ) \/ E. i e. _om x = A.g i ( 1st ` u ) ) ) } ) ) , { <. x , y >. | ( y = (/) /\ E. i e. _om E. j e. _om x = ( i e.g j ) ) } ) ` N ) ) = ( ( ( (/) Sat (/) ) ` N ) u. { <. x , y >. | ( y = (/) /\ E. u e. ( ( (/) Sat (/) ) ` N ) ( E. v e. ( ( (/) Sat (/) ) ` N ) x = ( ( 1st ` u ) |g ( 1st ` v ) ) \/ E. i e. _om x = A.g i ( 1st ` u ) ) ) } ) ) |
| 62 |
61
|
dmeqd |
|- ( N e. _om -> dom ( ( f e. _V |-> ( f u. { <. x , y >. | ( y = (/) /\ E. u e. f ( E. v e. f x = ( ( 1st ` u ) |g ( 1st ` v ) ) \/ E. i e. _om x = A.g i ( 1st ` u ) ) ) } ) ) ` ( rec ( ( f e. _V |-> ( f u. { <. x , y >. | ( y = (/) /\ E. u e. f ( E. v e. f x = ( ( 1st ` u ) |g ( 1st ` v ) ) \/ E. i e. _om x = A.g i ( 1st ` u ) ) ) } ) ) , { <. x , y >. | ( y = (/) /\ E. i e. _om E. j e. _om x = ( i e.g j ) ) } ) ` N ) ) = dom ( ( ( (/) Sat (/) ) ` N ) u. { <. x , y >. | ( y = (/) /\ E. u e. ( ( (/) Sat (/) ) ` N ) ( E. v e. ( ( (/) Sat (/) ) ` N ) x = ( ( 1st ` u ) |g ( 1st ` v ) ) \/ E. i e. _om x = A.g i ( 1st ` u ) ) ) } ) ) |
| 63 |
|
dmun |
|- dom ( ( ( (/) Sat (/) ) ` N ) u. { <. x , y >. | ( y = (/) /\ E. u e. ( ( (/) Sat (/) ) ` N ) ( E. v e. ( ( (/) Sat (/) ) ` N ) x = ( ( 1st ` u ) |g ( 1st ` v ) ) \/ E. i e. _om x = A.g i ( 1st ` u ) ) ) } ) = ( dom ( ( (/) Sat (/) ) ` N ) u. dom { <. x , y >. | ( y = (/) /\ E. u e. ( ( (/) Sat (/) ) ` N ) ( E. v e. ( ( (/) Sat (/) ) ` N ) x = ( ( 1st ` u ) |g ( 1st ` v ) ) \/ E. i e. _om x = A.g i ( 1st ` u ) ) ) } ) |
| 64 |
62 63
|
eqtrdi |
|- ( N e. _om -> dom ( ( f e. _V |-> ( f u. { <. x , y >. | ( y = (/) /\ E. u e. f ( E. v e. f x = ( ( 1st ` u ) |g ( 1st ` v ) ) \/ E. i e. _om x = A.g i ( 1st ` u ) ) ) } ) ) ` ( rec ( ( f e. _V |-> ( f u. { <. x , y >. | ( y = (/) /\ E. u e. f ( E. v e. f x = ( ( 1st ` u ) |g ( 1st ` v ) ) \/ E. i e. _om x = A.g i ( 1st ` u ) ) ) } ) ) , { <. x , y >. | ( y = (/) /\ E. i e. _om E. j e. _om x = ( i e.g j ) ) } ) ` N ) ) = ( dom ( ( (/) Sat (/) ) ` N ) u. dom { <. x , y >. | ( y = (/) /\ E. u e. ( ( (/) Sat (/) ) ` N ) ( E. v e. ( ( (/) Sat (/) ) ` N ) x = ( ( 1st ` u ) |g ( 1st ` v ) ) \/ E. i e. _om x = A.g i ( 1st ` u ) ) ) } ) ) |
| 65 |
|
fmlafv |
|- ( N e. suc _om -> ( Fmla ` N ) = dom ( ( (/) Sat (/) ) ` N ) ) |
| 66 |
17 65
|
syl |
|- ( N e. _om -> ( Fmla ` N ) = dom ( ( (/) Sat (/) ) ` N ) ) |
| 67 |
66
|
eqcomd |
|- ( N e. _om -> dom ( ( (/) Sat (/) ) ` N ) = ( Fmla ` N ) ) |
| 68 |
|
dmopab |
|- dom { <. x , y >. | ( y = (/) /\ E. u e. ( ( (/) Sat (/) ) ` N ) ( E. v e. ( ( (/) Sat (/) ) ` N ) x = ( ( 1st ` u ) |g ( 1st ` v ) ) \/ E. i e. _om x = A.g i ( 1st ` u ) ) ) } = { x | E. y ( y = (/) /\ E. u e. ( ( (/) Sat (/) ) ` N ) ( E. v e. ( ( (/) Sat (/) ) ` N ) x = ( ( 1st ` u ) |g ( 1st ` v ) ) \/ E. i e. _om x = A.g i ( 1st ` u ) ) ) } |
| 69 |
68
|
a1i |
|- ( N e. _om -> dom { <. x , y >. | ( y = (/) /\ E. u e. ( ( (/) Sat (/) ) ` N ) ( E. v e. ( ( (/) Sat (/) ) ` N ) x = ( ( 1st ` u ) |g ( 1st ` v ) ) \/ E. i e. _om x = A.g i ( 1st ` u ) ) ) } = { x | E. y ( y = (/) /\ E. u e. ( ( (/) Sat (/) ) ` N ) ( E. v e. ( ( (/) Sat (/) ) ` N ) x = ( ( 1st ` u ) |g ( 1st ` v ) ) \/ E. i e. _om x = A.g i ( 1st ` u ) ) ) } ) |
| 70 |
|
0ex |
|- (/) e. _V |
| 71 |
70
|
isseti |
|- E. y y = (/) |
| 72 |
|
19.41v |
|- ( E. y ( y = (/) /\ E. u e. ( ( (/) Sat (/) ) ` N ) ( E. v e. ( ( (/) Sat (/) ) ` N ) x = ( ( 1st ` u ) |g ( 1st ` v ) ) \/ E. i e. _om x = A.g i ( 1st ` u ) ) ) <-> ( E. y y = (/) /\ E. u e. ( ( (/) Sat (/) ) ` N ) ( E. v e. ( ( (/) Sat (/) ) ` N ) x = ( ( 1st ` u ) |g ( 1st ` v ) ) \/ E. i e. _om x = A.g i ( 1st ` u ) ) ) ) |
| 73 |
71 72
|
mpbiran |
|- ( E. y ( y = (/) /\ E. u e. ( ( (/) Sat (/) ) ` N ) ( E. v e. ( ( (/) Sat (/) ) ` N ) x = ( ( 1st ` u ) |g ( 1st ` v ) ) \/ E. i e. _om x = A.g i ( 1st ` u ) ) ) <-> E. u e. ( ( (/) Sat (/) ) ` N ) ( E. v e. ( ( (/) Sat (/) ) ` N ) x = ( ( 1st ` u ) |g ( 1st ` v ) ) \/ E. i e. _om x = A.g i ( 1st ` u ) ) ) |
| 74 |
73
|
abbii |
|- { x | E. y ( y = (/) /\ E. u e. ( ( (/) Sat (/) ) ` N ) ( E. v e. ( ( (/) Sat (/) ) ` N ) x = ( ( 1st ` u ) |g ( 1st ` v ) ) \/ E. i e. _om x = A.g i ( 1st ` u ) ) ) } = { x | E. u e. ( ( (/) Sat (/) ) ` N ) ( E. v e. ( ( (/) Sat (/) ) ` N ) x = ( ( 1st ` u ) |g ( 1st ` v ) ) \/ E. i e. _om x = A.g i ( 1st ` u ) ) } |
| 75 |
69 74
|
eqtrdi |
|- ( N e. _om -> dom { <. x , y >. | ( y = (/) /\ E. u e. ( ( (/) Sat (/) ) ` N ) ( E. v e. ( ( (/) Sat (/) ) ` N ) x = ( ( 1st ` u ) |g ( 1st ` v ) ) \/ E. i e. _om x = A.g i ( 1st ` u ) ) ) } = { x | E. u e. ( ( (/) Sat (/) ) ` N ) ( E. v e. ( ( (/) Sat (/) ) ` N ) x = ( ( 1st ` u ) |g ( 1st ` v ) ) \/ E. i e. _om x = A.g i ( 1st ` u ) ) } ) |
| 76 |
67 75
|
uneq12d |
|- ( N e. _om -> ( dom ( ( (/) Sat (/) ) ` N ) u. dom { <. x , y >. | ( y = (/) /\ E. u e. ( ( (/) Sat (/) ) ` N ) ( E. v e. ( ( (/) Sat (/) ) ` N ) x = ( ( 1st ` u ) |g ( 1st ` v ) ) \/ E. i e. _om x = A.g i ( 1st ` u ) ) ) } ) = ( ( Fmla ` N ) u. { x | E. u e. ( ( (/) Sat (/) ) ` N ) ( E. v e. ( ( (/) Sat (/) ) ` N ) x = ( ( 1st ` u ) |g ( 1st ` v ) ) \/ E. i e. _om x = A.g i ( 1st ` u ) ) } ) ) |
| 77 |
64 76
|
eqtrd |
|- ( N e. _om -> dom ( ( f e. _V |-> ( f u. { <. x , y >. | ( y = (/) /\ E. u e. f ( E. v e. f x = ( ( 1st ` u ) |g ( 1st ` v ) ) \/ E. i e. _om x = A.g i ( 1st ` u ) ) ) } ) ) ` ( rec ( ( f e. _V |-> ( f u. { <. x , y >. | ( y = (/) /\ E. u e. f ( E. v e. f x = ( ( 1st ` u ) |g ( 1st ` v ) ) \/ E. i e. _om x = A.g i ( 1st ` u ) ) ) } ) ) , { <. x , y >. | ( y = (/) /\ E. i e. _om E. j e. _om x = ( i e.g j ) ) } ) ` N ) ) = ( ( Fmla ` N ) u. { x | E. u e. ( ( (/) Sat (/) ) ` N ) ( E. v e. ( ( (/) Sat (/) ) ` N ) x = ( ( 1st ` u ) |g ( 1st ` v ) ) \/ E. i e. _om x = A.g i ( 1st ` u ) ) } ) ) |
| 78 |
9 16 77
|
3eqtrd |
|- ( N e. _om -> ( Fmla ` suc N ) = ( ( Fmla ` N ) u. { x | E. u e. ( ( (/) Sat (/) ) ` N ) ( E. v e. ( ( (/) Sat (/) ) ` N ) x = ( ( 1st ` u ) |g ( 1st ` v ) ) \/ E. i e. _om x = A.g i ( 1st ` u ) ) } ) ) |