Step |
Hyp |
Ref |
Expression |
1 |
|
df-fmla |
|
2 |
|
fveq2 |
|
3 |
2
|
dmeqd |
|
4 |
|
omsucelsucb |
|
5 |
4
|
biimpi |
|
6 |
|
fvex |
|
7 |
6
|
dmex |
|
8 |
7
|
a1i |
|
9 |
1 3 5 8
|
fvmptd3 |
|
10 |
|
satf0sucom |
|
11 |
5 10
|
syl |
|
12 |
|
nnon |
|
13 |
|
rdgsuc |
|
14 |
12 13
|
syl |
|
15 |
11 14
|
eqtrd |
|
16 |
15
|
dmeqd |
|
17 |
|
elelsuc |
|
18 |
|
satf0sucom |
|
19 |
18
|
eqcomd |
|
20 |
17 19
|
syl |
|
21 |
20
|
fveq2d |
|
22 |
|
eqidd |
|
23 |
|
id |
|
24 |
|
rexeq |
|
25 |
24
|
orbi1d |
|
26 |
25
|
rexeqbi1dv |
|
27 |
26
|
anbi2d |
|
28 |
27
|
opabbidv |
|
29 |
23 28
|
uneq12d |
|
30 |
29
|
adantl |
|
31 |
|
fvex |
|
32 |
31
|
a1i |
|
33 |
|
peano1 |
|
34 |
|
eleq1 |
|
35 |
33 34
|
mpbiri |
|
36 |
35
|
adantr |
|
37 |
36
|
pm4.71ri |
|
38 |
37
|
opabbii |
|
39 |
|
omex |
|
40 |
|
id |
|
41 |
|
unab |
|
42 |
31
|
abrexex |
|
43 |
39
|
abrexex |
|
44 |
42 43
|
unex |
|
45 |
41 44
|
eqeltrri |
|
46 |
45
|
a1i |
|
47 |
46
|
ralrimiva |
|
48 |
|
abrexex2g |
|
49 |
31 47 48
|
sylancr |
|
50 |
40 49
|
opabex3rd |
|
51 |
39 50
|
ax-mp |
|
52 |
|
simpr |
|
53 |
52
|
anim2i |
|
54 |
53
|
ssopab2i |
|
55 |
51 54
|
ssexi |
|
56 |
55
|
a1i |
|
57 |
38 56
|
eqeltrid |
|
58 |
|
unexg |
|
59 |
31 57 58
|
sylancr |
|
60 |
22 30 32 59
|
fvmptd |
|
61 |
21 60
|
eqtrd |
|
62 |
61
|
dmeqd |
|
63 |
|
dmun |
|
64 |
62 63
|
eqtrdi |
|
65 |
|
fmlafv |
|
66 |
17 65
|
syl |
|
67 |
66
|
eqcomd |
|
68 |
|
dmopab |
|
69 |
68
|
a1i |
|
70 |
|
0ex |
|
71 |
70
|
isseti |
|
72 |
|
19.41v |
|
73 |
71 72
|
mpbiran |
|
74 |
73
|
abbii |
|
75 |
69 74
|
eqtrdi |
|
76 |
67 75
|
uneq12d |
|
77 |
64 76
|
eqtrd |
|
78 |
9 16 77
|
3eqtrd |
|