Description: Existence of an ordered pair abstraction if the second components are elements of a set. (Contributed by AV, 17-Sep-2023) (Revised by AV, 9-Aug-2024)
Ref | Expression | ||
---|---|---|---|
Hypotheses | opabex3rd.1 | |
|
opabex3rd.2 | |
||
Assertion | opabex3rd | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | opabex3rd.1 | |
|
2 | opabex3rd.2 | |
|
3 | 19.42v | |
|
4 | an12 | |
|
5 | 4 | exbii | |
6 | elxp | |
|
7 | ancom | |
|
8 | 7 | anbi2i | |
9 | 8 | 2exbii | |
10 | 6 9 | bitri | |
11 | an12 | |
|
12 | velsn | |
|
13 | 12 | anbi1i | |
14 | 11 13 | bitri | |
15 | 14 | exbii | |
16 | opeq2 | |
|
17 | 16 | eqeq2d | |
18 | 17 | anbi1d | |
19 | 18 | equsexvw | |
20 | 15 19 | bitri | |
21 | 20 | exbii | |
22 | nfv | |
|
23 | nfsab1 | |
|
24 | 22 23 | nfan | |
25 | nfv | |
|
26 | opeq1 | |
|
27 | 26 | eqeq2d | |
28 | df-clab | |
|
29 | sbequ12 | |
|
30 | 29 | equcoms | |
31 | 28 30 | bitr4id | |
32 | 27 31 | anbi12d | |
33 | 24 25 32 | cbvexv1 | |
34 | 10 21 33 | 3bitri | |
35 | 34 | anbi2i | |
36 | 3 5 35 | 3bitr4ri | |
37 | 36 | exbii | |
38 | excom | |
|
39 | 37 38 | bitri | |
40 | eliun | |
|
41 | df-rex | |
|
42 | 40 41 | bitri | |
43 | elopab | |
|
44 | 39 42 43 | 3bitr4i | |
45 | 44 | eqriv | |
46 | vsnex | |
|
47 | xpexg | |
|
48 | 2 46 47 | sylancl | |
49 | 48 | ralrimiva | |
50 | iunexg | |
|
51 | 1 49 50 | syl2anc | |
52 | 45 51 | eqeltrrid | |