Metamath Proof Explorer


Theorem opabex3rd

Description: Existence of an ordered pair abstraction if the second components are elements of a set. (Contributed by AV, 17-Sep-2023) (Revised by AV, 9-Aug-2024)

Ref Expression
Hypotheses opabex3rd.1 φAV
opabex3rd.2 φyAx|ψV
Assertion opabex3rd φxy|yAψV

Proof

Step Hyp Ref Expression
1 opabex3rd.1 φAV
2 opabex3rd.2 φyAx|ψV
3 19.42v xyAz=xyψyAxz=xyψ
4 an12 z=xyyAψyAz=xyψ
5 4 exbii xz=xyyAψxyAz=xyψ
6 elxp zx|ψ×ywvz=wvwx|ψvy
7 ancom wx|ψvyvywx|ψ
8 7 anbi2i z=wvwx|ψvyz=wvvywx|ψ
9 8 2exbii wvz=wvwx|ψvywvz=wvvywx|ψ
10 6 9 bitri zx|ψ×ywvz=wvvywx|ψ
11 an12 z=wvvywx|ψvyz=wvwx|ψ
12 velsn vyv=y
13 12 anbi1i vyz=wvwx|ψv=yz=wvwx|ψ
14 11 13 bitri z=wvvywx|ψv=yz=wvwx|ψ
15 14 exbii vz=wvvywx|ψvv=yz=wvwx|ψ
16 opeq2 v=ywv=wy
17 16 eqeq2d v=yz=wvz=wy
18 17 anbi1d v=yz=wvwx|ψz=wywx|ψ
19 18 equsexvw vv=yz=wvwx|ψz=wywx|ψ
20 15 19 bitri vz=wvvywx|ψz=wywx|ψ
21 20 exbii wvz=wvvywx|ψwz=wywx|ψ
22 nfv xz=wy
23 nfsab1 xwx|ψ
24 22 23 nfan xz=wywx|ψ
25 nfv wz=xyψ
26 opeq1 w=xwy=xy
27 26 eqeq2d w=xz=wyz=xy
28 df-clab wx|ψwxψ
29 sbequ12 x=wψwxψ
30 29 equcoms w=xψwxψ
31 28 30 bitr4id w=xwx|ψψ
32 27 31 anbi12d w=xz=wywx|ψz=xyψ
33 24 25 32 cbvexv1 wz=wywx|ψxz=xyψ
34 10 21 33 3bitri zx|ψ×yxz=xyψ
35 34 anbi2i yAzx|ψ×yyAxz=xyψ
36 3 5 35 3bitr4ri yAzx|ψ×yxz=xyyAψ
37 36 exbii yyAzx|ψ×yyxz=xyyAψ
38 excom yxz=xyyAψxyz=xyyAψ
39 37 38 bitri yyAzx|ψ×yxyz=xyyAψ
40 eliun zyAx|ψ×yyAzx|ψ×y
41 df-rex yAzx|ψ×yyyAzx|ψ×y
42 40 41 bitri zyAx|ψ×yyyAzx|ψ×y
43 elopab zxy|yAψxyz=xyyAψ
44 39 42 43 3bitr4i zyAx|ψ×yzxy|yAψ
45 44 eqriv yAx|ψ×y=xy|yAψ
46 vsnex yV
47 xpexg x|ψVyVx|ψ×yV
48 2 46 47 sylancl φyAx|ψ×yV
49 48 ralrimiva φyAx|ψ×yV
50 iunexg AVyAx|ψ×yVyAx|ψ×yV
51 1 49 50 syl2anc φyAx|ψ×yV
52 45 51 eqeltrrid φxy|yAψV