Description: Existence of an ordered pair abstraction. (Contributed by Jeff Madsen, 2-Sep-2009)
Ref | Expression | ||
---|---|---|---|
Hypotheses | opabex3.1 | |
|
opabex3.2 | |
||
Assertion | opabex3 | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | opabex3.1 | |
|
2 | opabex3.2 | |
|
3 | 19.42v | |
|
4 | an12 | |
|
5 | 4 | exbii | |
6 | elxp | |
|
7 | excom | |
|
8 | an12 | |
|
9 | velsn | |
|
10 | 9 | anbi1i | |
11 | 8 10 | bitri | |
12 | 11 | exbii | |
13 | opeq1 | |
|
14 | 13 | eqeq2d | |
15 | 14 | anbi1d | |
16 | 15 | equsexvw | |
17 | 12 16 | bitri | |
18 | 17 | exbii | |
19 | 7 18 | bitri | |
20 | nfv | |
|
21 | nfsab1 | |
|
22 | 20 21 | nfan | |
23 | nfv | |
|
24 | opeq2 | |
|
25 | 24 | eqeq2d | |
26 | df-clab | |
|
27 | sbequ12 | |
|
28 | 27 | equcoms | |
29 | 26 28 | bitr4id | |
30 | 25 29 | anbi12d | |
31 | 22 23 30 | cbvexv1 | |
32 | 6 19 31 | 3bitri | |
33 | 32 | anbi2i | |
34 | 3 5 33 | 3bitr4ri | |
35 | 34 | exbii | |
36 | eliun | |
|
37 | df-rex | |
|
38 | 36 37 | bitri | |
39 | elopab | |
|
40 | 35 38 39 | 3bitr4i | |
41 | 40 | eqriv | |
42 | vsnex | |
|
43 | xpexg | |
|
44 | 42 2 43 | sylancr | |
45 | 44 | rgen | |
46 | iunexg | |
|
47 | 1 45 46 | mp2an | |
48 | 41 47 | eqeltrri | |