| Step |
Hyp |
Ref |
Expression |
| 1 |
|
df-1o |
|
| 2 |
1
|
fveq2i |
|
| 3 |
|
peano1 |
|
| 4 |
|
fmlasuc |
|
| 5 |
3 4
|
ax-mp |
|
| 6 |
|
fmla0xp |
|
| 7 |
|
fmla0 |
|
| 8 |
7
|
rexeqi |
|
| 9 |
|
eqeq1 |
|
| 10 |
9
|
2rexbidv |
|
| 11 |
10
|
elrab |
|
| 12 |
|
oveq1 |
|
| 13 |
12
|
eqeq2d |
|
| 14 |
13
|
rexbidv |
|
| 15 |
|
eqidd |
|
| 16 |
|
id |
|
| 17 |
15 16
|
goaleq12d |
|
| 18 |
17
|
eqeq2d |
|
| 19 |
18
|
rexbidv |
|
| 20 |
14 19
|
orbi12d |
|
| 21 |
|
eqeq1 |
|
| 22 |
21
|
2rexbidv |
|
| 23 |
|
fmla0 |
|
| 24 |
22 23
|
elrab2 |
|
| 25 |
|
oveq2 |
|
| 26 |
25
|
eqeq2d |
|
| 27 |
26
|
biimpcd |
|
| 28 |
27
|
reximdv |
|
| 29 |
28
|
reximdv |
|
| 30 |
29
|
com12 |
|
| 31 |
24 30
|
simplbiim |
|
| 32 |
31
|
rexlimiv |
|
| 33 |
32
|
orim1i |
|
| 34 |
|
r19.43 |
|
| 35 |
33 34
|
sylibr |
|
| 36 |
20 35
|
biimtrdi |
|
| 37 |
36
|
com12 |
|
| 38 |
37
|
reximdv |
|
| 39 |
38
|
reximdv |
|
| 40 |
39
|
com12 |
|
| 41 |
11 40
|
simplbiim |
|
| 42 |
41
|
rexlimiv |
|
| 43 |
|
oveq1 |
|
| 44 |
43
|
oveq1d |
|
| 45 |
44
|
eqeq2d |
|
| 46 |
45
|
rexbidv |
|
| 47 |
|
eqidd |
|
| 48 |
47 43
|
goaleq12d |
|
| 49 |
48
|
eqeq2d |
|
| 50 |
46 49
|
orbi12d |
|
| 51 |
50
|
rexbidv |
|
| 52 |
|
oveq2 |
|
| 53 |
52
|
oveq1d |
|
| 54 |
53
|
eqeq2d |
|
| 55 |
54
|
rexbidv |
|
| 56 |
|
eqidd |
|
| 57 |
56 52
|
goaleq12d |
|
| 58 |
57
|
eqeq2d |
|
| 59 |
55 58
|
orbi12d |
|
| 60 |
59
|
rexbidv |
|
| 61 |
51 60
|
cbvrex2vw |
|
| 62 |
|
oveq1 |
|
| 63 |
62
|
oveq2d |
|
| 64 |
63
|
eqeq2d |
|
| 65 |
64
|
rexbidv |
|
| 66 |
|
id |
|
| 67 |
|
eqidd |
|
| 68 |
66 67
|
goaleq12d |
|
| 69 |
68
|
eqeq2d |
|
| 70 |
65 69
|
orbi12d |
|
| 71 |
70
|
cbvrexvw |
|
| 72 |
3
|
ne0ii |
|
| 73 |
|
r19.44zv |
|
| 74 |
72 73
|
ax-mp |
|
| 75 |
|
eqeq1 |
|
| 76 |
75
|
2rexbidv |
|
| 77 |
|
ovexd |
|
| 78 |
|
simpl |
|
| 79 |
43
|
eqeq2d |
|
| 80 |
79
|
rexbidv |
|
| 81 |
80
|
adantl |
|
| 82 |
|
simpr |
|
| 83 |
52
|
eqeq2d |
|
| 84 |
83
|
adantl |
|
| 85 |
|
eqidd |
|
| 86 |
82 84 85
|
rspcedvd |
|
| 87 |
78 81 86
|
rspcedvd |
|
| 88 |
87
|
ad3antrrr |
|
| 89 |
76 77 88
|
elrabd |
|
| 90 |
|
oveq1 |
|
| 91 |
90
|
eqeq2d |
|
| 92 |
91
|
rexbidv |
|
| 93 |
|
eqidd |
|
| 94 |
|
id |
|
| 95 |
93 94
|
goaleq12d |
|
| 96 |
95
|
eqeq2d |
|
| 97 |
96
|
rexbidv |
|
| 98 |
92 97
|
orbi12d |
|
| 99 |
98
|
adantl |
|
| 100 |
|
ovexd |
|
| 101 |
|
simpr |
|
| 102 |
101
|
adantr |
|
| 103 |
|
oveq1 |
|
| 104 |
103
|
eqeq2d |
|
| 105 |
104
|
rexbidv |
|
| 106 |
105
|
adantl |
|
| 107 |
|
simpr |
|
| 108 |
|
oveq2 |
|
| 109 |
108
|
eqeq2d |
|
| 110 |
109
|
adantl |
|
| 111 |
|
eqidd |
|
| 112 |
107 110 111
|
rspcedvd |
|
| 113 |
102 106 112
|
rspcedvd |
|
| 114 |
|
eqeq1 |
|
| 115 |
114
|
2rexbidv |
|
| 116 |
|
fmla0 |
|
| 117 |
115 116
|
elrab2 |
|
| 118 |
100 113 117
|
sylanbrc |
|
| 119 |
118
|
adantr |
|
| 120 |
|
oveq2 |
|
| 121 |
120
|
eqeq2d |
|
| 122 |
121
|
adantl |
|
| 123 |
|
simpr |
|
| 124 |
119 122 123
|
rspcedvd |
|
| 125 |
124
|
ex |
|
| 126 |
102
|
adantr |
|
| 127 |
69
|
adantl |
|
| 128 |
|
simpr |
|
| 129 |
126 127 128
|
rspcedvd |
|
| 130 |
129
|
ex |
|
| 131 |
125 130
|
orim12d |
|
| 132 |
131
|
imp |
|
| 133 |
89 99 132
|
rspcedvd |
|
| 134 |
133
|
ex |
|
| 135 |
134
|
rexlimdva |
|
| 136 |
74 135
|
biimtrrid |
|
| 137 |
136
|
rexlimdva |
|
| 138 |
71 137
|
biimtrid |
|
| 139 |
138
|
rexlimivv |
|
| 140 |
61 139
|
sylbi |
|
| 141 |
42 140
|
impbii |
|
| 142 |
8 141
|
bitri |
|
| 143 |
142
|
abbii |
|
| 144 |
6 143
|
uneq12i |
|
| 145 |
2 5 144
|
3eqtri |
|