| Step |
Hyp |
Ref |
Expression |
| 1 |
|
fmla0 |
|
| 2 |
|
rabab |
|
| 3 |
|
eqabcb |
|
| 4 |
|
goel |
|
| 5 |
4
|
eqeq2d |
|
| 6 |
5
|
2rexbiia |
|
| 7 |
|
0ex |
|
| 8 |
7
|
snid |
|
| 9 |
8
|
a1i |
|
| 10 |
|
opelxpi |
|
| 11 |
9 10
|
opelxpd |
|
| 12 |
|
eleq1 |
|
| 13 |
11 12
|
syl5ibrcom |
|
| 14 |
13
|
rexlimivv |
|
| 15 |
|
elxpi |
|
| 16 |
|
elsni |
|
| 17 |
16
|
opeq1d |
|
| 18 |
17
|
eqeq2d |
|
| 19 |
18
|
adantr |
|
| 20 |
|
elxpi |
|
| 21 |
|
simprr |
|
| 22 |
|
simpl |
|
| 23 |
|
opeq2 |
|
| 24 |
23
|
adantr |
|
| 25 |
24
|
adantl |
|
| 26 |
22 25
|
eqtrd |
|
| 27 |
21 26
|
jca |
|
| 28 |
27
|
ex |
|
| 29 |
28
|
2eximdv |
|
| 30 |
|
r2ex |
|
| 31 |
29 30
|
imbitrrdi |
|
| 32 |
20 31
|
syl5com |
|
| 33 |
32
|
adantl |
|
| 34 |
19 33
|
sylbid |
|
| 35 |
34
|
impcom |
|
| 36 |
35
|
exlimivv |
|
| 37 |
15 36
|
syl |
|
| 38 |
14 37
|
impbii |
|
| 39 |
6 38
|
bitri |
|
| 40 |
3 39
|
mpgbir |
|
| 41 |
1 2 40
|
3eqtri |
|