Metamath Proof Explorer


Theorem goaln0

Description: The "Godel-set of universal quantification" is a Godel formula of at least height 1. (Contributed by AV, 22-Oct-2023)

Ref Expression
Assertion goaln0 𝑔iAFmlaNN

Proof

Step Hyp Ref Expression
1 df-goal 𝑔iA=2𝑜iA
2 2on0 2𝑜
3 2 neii ¬2𝑜=
4 3 intnanr ¬2𝑜=iA=kj
5 2oex 2𝑜V
6 opex iAV
7 5 6 opth 2𝑜iA=kj2𝑜=iA=kj
8 4 7 mtbir ¬2𝑜iA=kj
9 goel kωjωk𝑔j=kj
10 9 eqeq2d kωjω2𝑜iA=k𝑔j2𝑜iA=kj
11 8 10 mtbiri kωjω¬2𝑜iA=k𝑔j
12 11 rgen2 kωjω¬2𝑜iA=k𝑔j
13 ralnex2 kωjω¬2𝑜iA=k𝑔j¬kωjω2𝑜iA=k𝑔j
14 12 13 mpbi ¬kωjω2𝑜iA=k𝑔j
15 14 intnan ¬2𝑜iAVkωjω2𝑜iA=k𝑔j
16 eqeq1 x=2𝑜iAx=k𝑔j2𝑜iA=k𝑔j
17 16 2rexbidv x=2𝑜iAkωjωx=k𝑔jkωjω2𝑜iA=k𝑔j
18 fmla0 Fmla=xV|kωjωx=k𝑔j
19 17 18 elrab2 2𝑜iAFmla2𝑜iAVkωjω2𝑜iA=k𝑔j
20 15 19 mtbir ¬2𝑜iAFmla
21 1 20 eqneltri ¬𝑔iAFmla
22 fveq2 N=FmlaN=Fmla
23 22 eleq2d N=𝑔iAFmlaN𝑔iAFmla
24 21 23 mtbiri N=¬𝑔iAFmlaN
25 24 necon2ai 𝑔iAFmlaNN