| Step | Hyp | Ref | Expression | 
						
							| 1 |  | fmlaomn0 | ⊢ ( 𝑥  ∈  ω  →  ∅  ∉  ( Fmla ‘ 𝑥 ) ) | 
						
							| 2 |  | df-nel | ⊢ ( ∅  ∉  ( Fmla ‘ 𝑥 )  ↔  ¬  ∅  ∈  ( Fmla ‘ 𝑥 ) ) | 
						
							| 3 | 1 2 | sylib | ⊢ ( 𝑥  ∈  ω  →  ¬  ∅  ∈  ( Fmla ‘ 𝑥 ) ) | 
						
							| 4 | 3 | nrex | ⊢ ¬  ∃ 𝑥  ∈  ω ∅  ∈  ( Fmla ‘ 𝑥 ) | 
						
							| 5 |  | df-nel | ⊢ ( ∅  ∉  ( Fmla ‘ ω )  ↔  ¬  ∅  ∈  ( Fmla ‘ ω ) ) | 
						
							| 6 |  | fmla | ⊢ ( Fmla ‘ ω )  =  ∪  𝑥  ∈  ω ( Fmla ‘ 𝑥 ) | 
						
							| 7 | 6 | eleq2i | ⊢ ( ∅  ∈  ( Fmla ‘ ω )  ↔  ∅  ∈  ∪  𝑥  ∈  ω ( Fmla ‘ 𝑥 ) ) | 
						
							| 8 |  | eliun | ⊢ ( ∅  ∈  ∪  𝑥  ∈  ω ( Fmla ‘ 𝑥 )  ↔  ∃ 𝑥  ∈  ω ∅  ∈  ( Fmla ‘ 𝑥 ) ) | 
						
							| 9 | 7 8 | bitri | ⊢ ( ∅  ∈  ( Fmla ‘ ω )  ↔  ∃ 𝑥  ∈  ω ∅  ∈  ( Fmla ‘ 𝑥 ) ) | 
						
							| 10 | 5 9 | xchbinx | ⊢ ( ∅  ∉  ( Fmla ‘ ω )  ↔  ¬  ∃ 𝑥  ∈  ω ∅  ∈  ( Fmla ‘ 𝑥 ) ) | 
						
							| 11 | 4 10 | mpbir | ⊢ ∅  ∉  ( Fmla ‘ ω ) |