| Step | Hyp | Ref | Expression | 
						
							| 1 |  | fveq2 | ⊢ ( 𝑥  =  ∅  →  ( Fmla ‘ 𝑥 )  =  ( Fmla ‘ ∅ ) ) | 
						
							| 2 | 1 | eleq2d | ⊢ ( 𝑥  =  ∅  →  ( ∅  ∈  ( Fmla ‘ 𝑥 )  ↔  ∅  ∈  ( Fmla ‘ ∅ ) ) ) | 
						
							| 3 | 2 | notbid | ⊢ ( 𝑥  =  ∅  →  ( ¬  ∅  ∈  ( Fmla ‘ 𝑥 )  ↔  ¬  ∅  ∈  ( Fmla ‘ ∅ ) ) ) | 
						
							| 4 |  | fveq2 | ⊢ ( 𝑥  =  𝑦  →  ( Fmla ‘ 𝑥 )  =  ( Fmla ‘ 𝑦 ) ) | 
						
							| 5 | 4 | eleq2d | ⊢ ( 𝑥  =  𝑦  →  ( ∅  ∈  ( Fmla ‘ 𝑥 )  ↔  ∅  ∈  ( Fmla ‘ 𝑦 ) ) ) | 
						
							| 6 | 5 | notbid | ⊢ ( 𝑥  =  𝑦  →  ( ¬  ∅  ∈  ( Fmla ‘ 𝑥 )  ↔  ¬  ∅  ∈  ( Fmla ‘ 𝑦 ) ) ) | 
						
							| 7 |  | fveq2 | ⊢ ( 𝑥  =  suc  𝑦  →  ( Fmla ‘ 𝑥 )  =  ( Fmla ‘ suc  𝑦 ) ) | 
						
							| 8 | 7 | eleq2d | ⊢ ( 𝑥  =  suc  𝑦  →  ( ∅  ∈  ( Fmla ‘ 𝑥 )  ↔  ∅  ∈  ( Fmla ‘ suc  𝑦 ) ) ) | 
						
							| 9 | 8 | notbid | ⊢ ( 𝑥  =  suc  𝑦  →  ( ¬  ∅  ∈  ( Fmla ‘ 𝑥 )  ↔  ¬  ∅  ∈  ( Fmla ‘ suc  𝑦 ) ) ) | 
						
							| 10 |  | fveq2 | ⊢ ( 𝑥  =  𝑁  →  ( Fmla ‘ 𝑥 )  =  ( Fmla ‘ 𝑁 ) ) | 
						
							| 11 | 10 | eleq2d | ⊢ ( 𝑥  =  𝑁  →  ( ∅  ∈  ( Fmla ‘ 𝑥 )  ↔  ∅  ∈  ( Fmla ‘ 𝑁 ) ) ) | 
						
							| 12 | 11 | notbid | ⊢ ( 𝑥  =  𝑁  →  ( ¬  ∅  ∈  ( Fmla ‘ 𝑥 )  ↔  ¬  ∅  ∈  ( Fmla ‘ 𝑁 ) ) ) | 
						
							| 13 |  | 0ex | ⊢ ∅  ∈  V | 
						
							| 14 |  | opex | ⊢ 〈 𝑖 ,  𝑗 〉  ∈  V | 
						
							| 15 | 13 14 | pm3.2i | ⊢ ( ∅  ∈  V  ∧  〈 𝑖 ,  𝑗 〉  ∈  V ) | 
						
							| 16 | 15 | a1i | ⊢ ( ( 𝑖  ∈  ω  ∧  𝑗  ∈  ω )  →  ( ∅  ∈  V  ∧  〈 𝑖 ,  𝑗 〉  ∈  V ) ) | 
						
							| 17 |  | necom | ⊢ ( ∅  ≠  〈 ∅ ,  〈 𝑖 ,  𝑗 〉 〉  ↔  〈 ∅ ,  〈 𝑖 ,  𝑗 〉 〉  ≠  ∅ ) | 
						
							| 18 |  | opnz | ⊢ ( 〈 ∅ ,  〈 𝑖 ,  𝑗 〉 〉  ≠  ∅  ↔  ( ∅  ∈  V  ∧  〈 𝑖 ,  𝑗 〉  ∈  V ) ) | 
						
							| 19 | 17 18 | bitri | ⊢ ( ∅  ≠  〈 ∅ ,  〈 𝑖 ,  𝑗 〉 〉  ↔  ( ∅  ∈  V  ∧  〈 𝑖 ,  𝑗 〉  ∈  V ) ) | 
						
							| 20 | 16 19 | sylibr | ⊢ ( ( 𝑖  ∈  ω  ∧  𝑗  ∈  ω )  →  ∅  ≠  〈 ∅ ,  〈 𝑖 ,  𝑗 〉 〉 ) | 
						
							| 21 | 20 | neneqd | ⊢ ( ( 𝑖  ∈  ω  ∧  𝑗  ∈  ω )  →  ¬  ∅  =  〈 ∅ ,  〈 𝑖 ,  𝑗 〉 〉 ) | 
						
							| 22 |  | goel | ⊢ ( ( 𝑖  ∈  ω  ∧  𝑗  ∈  ω )  →  ( 𝑖 ∈𝑔 𝑗 )  =  〈 ∅ ,  〈 𝑖 ,  𝑗 〉 〉 ) | 
						
							| 23 | 22 | eqeq2d | ⊢ ( ( 𝑖  ∈  ω  ∧  𝑗  ∈  ω )  →  ( ∅  =  ( 𝑖 ∈𝑔 𝑗 )  ↔  ∅  =  〈 ∅ ,  〈 𝑖 ,  𝑗 〉 〉 ) ) | 
						
							| 24 | 21 23 | mtbird | ⊢ ( ( 𝑖  ∈  ω  ∧  𝑗  ∈  ω )  →  ¬  ∅  =  ( 𝑖 ∈𝑔 𝑗 ) ) | 
						
							| 25 | 24 | rgen2 | ⊢ ∀ 𝑖  ∈  ω ∀ 𝑗  ∈  ω ¬  ∅  =  ( 𝑖 ∈𝑔 𝑗 ) | 
						
							| 26 |  | ralnex2 | ⊢ ( ∀ 𝑖  ∈  ω ∀ 𝑗  ∈  ω ¬  ∅  =  ( 𝑖 ∈𝑔 𝑗 )  ↔  ¬  ∃ 𝑖  ∈  ω ∃ 𝑗  ∈  ω ∅  =  ( 𝑖 ∈𝑔 𝑗 ) ) | 
						
							| 27 | 25 26 | mpbi | ⊢ ¬  ∃ 𝑖  ∈  ω ∃ 𝑗  ∈  ω ∅  =  ( 𝑖 ∈𝑔 𝑗 ) | 
						
							| 28 | 27 | intnan | ⊢ ¬  ( ∅  ∈  V  ∧  ∃ 𝑖  ∈  ω ∃ 𝑗  ∈  ω ∅  =  ( 𝑖 ∈𝑔 𝑗 ) ) | 
						
							| 29 |  | fmla0 | ⊢ ( Fmla ‘ ∅ )  =  { 𝑥  ∈  V  ∣  ∃ 𝑖  ∈  ω ∃ 𝑗  ∈  ω 𝑥  =  ( 𝑖 ∈𝑔 𝑗 ) } | 
						
							| 30 | 29 | eleq2i | ⊢ ( ∅  ∈  ( Fmla ‘ ∅ )  ↔  ∅  ∈  { 𝑥  ∈  V  ∣  ∃ 𝑖  ∈  ω ∃ 𝑗  ∈  ω 𝑥  =  ( 𝑖 ∈𝑔 𝑗 ) } ) | 
						
							| 31 |  | eqeq1 | ⊢ ( 𝑥  =  ∅  →  ( 𝑥  =  ( 𝑖 ∈𝑔 𝑗 )  ↔  ∅  =  ( 𝑖 ∈𝑔 𝑗 ) ) ) | 
						
							| 32 | 31 | 2rexbidv | ⊢ ( 𝑥  =  ∅  →  ( ∃ 𝑖  ∈  ω ∃ 𝑗  ∈  ω 𝑥  =  ( 𝑖 ∈𝑔 𝑗 )  ↔  ∃ 𝑖  ∈  ω ∃ 𝑗  ∈  ω ∅  =  ( 𝑖 ∈𝑔 𝑗 ) ) ) | 
						
							| 33 | 32 | elrab | ⊢ ( ∅  ∈  { 𝑥  ∈  V  ∣  ∃ 𝑖  ∈  ω ∃ 𝑗  ∈  ω 𝑥  =  ( 𝑖 ∈𝑔 𝑗 ) }  ↔  ( ∅  ∈  V  ∧  ∃ 𝑖  ∈  ω ∃ 𝑗  ∈  ω ∅  =  ( 𝑖 ∈𝑔 𝑗 ) ) ) | 
						
							| 34 | 30 33 | bitri | ⊢ ( ∅  ∈  ( Fmla ‘ ∅ )  ↔  ( ∅  ∈  V  ∧  ∃ 𝑖  ∈  ω ∃ 𝑗  ∈  ω ∅  =  ( 𝑖 ∈𝑔 𝑗 ) ) ) | 
						
							| 35 | 28 34 | mtbir | ⊢ ¬  ∅  ∈  ( Fmla ‘ ∅ ) | 
						
							| 36 |  | simpr | ⊢ ( ( 𝑦  ∈  ω  ∧  ¬  ∅  ∈  ( Fmla ‘ 𝑦 ) )  →  ¬  ∅  ∈  ( Fmla ‘ 𝑦 ) ) | 
						
							| 37 |  | 1oex | ⊢ 1o  ∈  V | 
						
							| 38 |  | opex | ⊢ 〈 𝑢 ,  𝑣 〉  ∈  V | 
						
							| 39 | 37 38 | opnzi | ⊢ 〈 1o ,  〈 𝑢 ,  𝑣 〉 〉  ≠  ∅ | 
						
							| 40 | 39 | nesymi | ⊢ ¬  ∅  =  〈 1o ,  〈 𝑢 ,  𝑣 〉 〉 | 
						
							| 41 |  | gonafv | ⊢ ( ( 𝑢  ∈  ( Fmla ‘ 𝑦 )  ∧  𝑣  ∈  ( Fmla ‘ 𝑦 ) )  →  ( 𝑢 ⊼𝑔 𝑣 )  =  〈 1o ,  〈 𝑢 ,  𝑣 〉 〉 ) | 
						
							| 42 | 41 | adantll | ⊢ ( ( ( 𝑦  ∈  ω  ∧  𝑢  ∈  ( Fmla ‘ 𝑦 ) )  ∧  𝑣  ∈  ( Fmla ‘ 𝑦 ) )  →  ( 𝑢 ⊼𝑔 𝑣 )  =  〈 1o ,  〈 𝑢 ,  𝑣 〉 〉 ) | 
						
							| 43 | 42 | eqeq2d | ⊢ ( ( ( 𝑦  ∈  ω  ∧  𝑢  ∈  ( Fmla ‘ 𝑦 ) )  ∧  𝑣  ∈  ( Fmla ‘ 𝑦 ) )  →  ( ∅  =  ( 𝑢 ⊼𝑔 𝑣 )  ↔  ∅  =  〈 1o ,  〈 𝑢 ,  𝑣 〉 〉 ) ) | 
						
							| 44 | 40 43 | mtbiri | ⊢ ( ( ( 𝑦  ∈  ω  ∧  𝑢  ∈  ( Fmla ‘ 𝑦 ) )  ∧  𝑣  ∈  ( Fmla ‘ 𝑦 ) )  →  ¬  ∅  =  ( 𝑢 ⊼𝑔 𝑣 ) ) | 
						
							| 45 | 44 | ralrimiva | ⊢ ( ( 𝑦  ∈  ω  ∧  𝑢  ∈  ( Fmla ‘ 𝑦 ) )  →  ∀ 𝑣  ∈  ( Fmla ‘ 𝑦 ) ¬  ∅  =  ( 𝑢 ⊼𝑔 𝑣 ) ) | 
						
							| 46 |  | 2oex | ⊢ 2o  ∈  V | 
						
							| 47 |  | opex | ⊢ 〈 𝑖 ,  𝑢 〉  ∈  V | 
						
							| 48 | 46 47 | opnzi | ⊢ 〈 2o ,  〈 𝑖 ,  𝑢 〉 〉  ≠  ∅ | 
						
							| 49 | 48 | nesymi | ⊢ ¬  ∅  =  〈 2o ,  〈 𝑖 ,  𝑢 〉 〉 | 
						
							| 50 |  | df-goal | ⊢ ∀𝑔 𝑖 𝑢  =  〈 2o ,  〈 𝑖 ,  𝑢 〉 〉 | 
						
							| 51 | 50 | eqeq2i | ⊢ ( ∅  =  ∀𝑔 𝑖 𝑢  ↔  ∅  =  〈 2o ,  〈 𝑖 ,  𝑢 〉 〉 ) | 
						
							| 52 | 49 51 | mtbir | ⊢ ¬  ∅  =  ∀𝑔 𝑖 𝑢 | 
						
							| 53 | 52 | a1i | ⊢ ( ( ( 𝑦  ∈  ω  ∧  𝑢  ∈  ( Fmla ‘ 𝑦 ) )  ∧  𝑖  ∈  ω )  →  ¬  ∅  =  ∀𝑔 𝑖 𝑢 ) | 
						
							| 54 | 53 | ralrimiva | ⊢ ( ( 𝑦  ∈  ω  ∧  𝑢  ∈  ( Fmla ‘ 𝑦 ) )  →  ∀ 𝑖  ∈  ω ¬  ∅  =  ∀𝑔 𝑖 𝑢 ) | 
						
							| 55 | 45 54 | jca | ⊢ ( ( 𝑦  ∈  ω  ∧  𝑢  ∈  ( Fmla ‘ 𝑦 ) )  →  ( ∀ 𝑣  ∈  ( Fmla ‘ 𝑦 ) ¬  ∅  =  ( 𝑢 ⊼𝑔 𝑣 )  ∧  ∀ 𝑖  ∈  ω ¬  ∅  =  ∀𝑔 𝑖 𝑢 ) ) | 
						
							| 56 | 55 | ralrimiva | ⊢ ( 𝑦  ∈  ω  →  ∀ 𝑢  ∈  ( Fmla ‘ 𝑦 ) ( ∀ 𝑣  ∈  ( Fmla ‘ 𝑦 ) ¬  ∅  =  ( 𝑢 ⊼𝑔 𝑣 )  ∧  ∀ 𝑖  ∈  ω ¬  ∅  =  ∀𝑔 𝑖 𝑢 ) ) | 
						
							| 57 | 56 | adantr | ⊢ ( ( 𝑦  ∈  ω  ∧  ¬  ∅  ∈  ( Fmla ‘ 𝑦 ) )  →  ∀ 𝑢  ∈  ( Fmla ‘ 𝑦 ) ( ∀ 𝑣  ∈  ( Fmla ‘ 𝑦 ) ¬  ∅  =  ( 𝑢 ⊼𝑔 𝑣 )  ∧  ∀ 𝑖  ∈  ω ¬  ∅  =  ∀𝑔 𝑖 𝑢 ) ) | 
						
							| 58 |  | ralnex | ⊢ ( ∀ 𝑣  ∈  ( Fmla ‘ 𝑦 ) ¬  ∅  =  ( 𝑢 ⊼𝑔 𝑣 )  ↔  ¬  ∃ 𝑣  ∈  ( Fmla ‘ 𝑦 ) ∅  =  ( 𝑢 ⊼𝑔 𝑣 ) ) | 
						
							| 59 |  | ralnex | ⊢ ( ∀ 𝑖  ∈  ω ¬  ∅  =  ∀𝑔 𝑖 𝑢  ↔  ¬  ∃ 𝑖  ∈  ω ∅  =  ∀𝑔 𝑖 𝑢 ) | 
						
							| 60 | 58 59 | anbi12i | ⊢ ( ( ∀ 𝑣  ∈  ( Fmla ‘ 𝑦 ) ¬  ∅  =  ( 𝑢 ⊼𝑔 𝑣 )  ∧  ∀ 𝑖  ∈  ω ¬  ∅  =  ∀𝑔 𝑖 𝑢 )  ↔  ( ¬  ∃ 𝑣  ∈  ( Fmla ‘ 𝑦 ) ∅  =  ( 𝑢 ⊼𝑔 𝑣 )  ∧  ¬  ∃ 𝑖  ∈  ω ∅  =  ∀𝑔 𝑖 𝑢 ) ) | 
						
							| 61 |  | ioran | ⊢ ( ¬  ( ∃ 𝑣  ∈  ( Fmla ‘ 𝑦 ) ∅  =  ( 𝑢 ⊼𝑔 𝑣 )  ∨  ∃ 𝑖  ∈  ω ∅  =  ∀𝑔 𝑖 𝑢 )  ↔  ( ¬  ∃ 𝑣  ∈  ( Fmla ‘ 𝑦 ) ∅  =  ( 𝑢 ⊼𝑔 𝑣 )  ∧  ¬  ∃ 𝑖  ∈  ω ∅  =  ∀𝑔 𝑖 𝑢 ) ) | 
						
							| 62 | 60 61 | bitr4i | ⊢ ( ( ∀ 𝑣  ∈  ( Fmla ‘ 𝑦 ) ¬  ∅  =  ( 𝑢 ⊼𝑔 𝑣 )  ∧  ∀ 𝑖  ∈  ω ¬  ∅  =  ∀𝑔 𝑖 𝑢 )  ↔  ¬  ( ∃ 𝑣  ∈  ( Fmla ‘ 𝑦 ) ∅  =  ( 𝑢 ⊼𝑔 𝑣 )  ∨  ∃ 𝑖  ∈  ω ∅  =  ∀𝑔 𝑖 𝑢 ) ) | 
						
							| 63 | 62 | ralbii | ⊢ ( ∀ 𝑢  ∈  ( Fmla ‘ 𝑦 ) ( ∀ 𝑣  ∈  ( Fmla ‘ 𝑦 ) ¬  ∅  =  ( 𝑢 ⊼𝑔 𝑣 )  ∧  ∀ 𝑖  ∈  ω ¬  ∅  =  ∀𝑔 𝑖 𝑢 )  ↔  ∀ 𝑢  ∈  ( Fmla ‘ 𝑦 ) ¬  ( ∃ 𝑣  ∈  ( Fmla ‘ 𝑦 ) ∅  =  ( 𝑢 ⊼𝑔 𝑣 )  ∨  ∃ 𝑖  ∈  ω ∅  =  ∀𝑔 𝑖 𝑢 ) ) | 
						
							| 64 |  | ralnex | ⊢ ( ∀ 𝑢  ∈  ( Fmla ‘ 𝑦 ) ¬  ( ∃ 𝑣  ∈  ( Fmla ‘ 𝑦 ) ∅  =  ( 𝑢 ⊼𝑔 𝑣 )  ∨  ∃ 𝑖  ∈  ω ∅  =  ∀𝑔 𝑖 𝑢 )  ↔  ¬  ∃ 𝑢  ∈  ( Fmla ‘ 𝑦 ) ( ∃ 𝑣  ∈  ( Fmla ‘ 𝑦 ) ∅  =  ( 𝑢 ⊼𝑔 𝑣 )  ∨  ∃ 𝑖  ∈  ω ∅  =  ∀𝑔 𝑖 𝑢 ) ) | 
						
							| 65 | 63 64 | bitri | ⊢ ( ∀ 𝑢  ∈  ( Fmla ‘ 𝑦 ) ( ∀ 𝑣  ∈  ( Fmla ‘ 𝑦 ) ¬  ∅  =  ( 𝑢 ⊼𝑔 𝑣 )  ∧  ∀ 𝑖  ∈  ω ¬  ∅  =  ∀𝑔 𝑖 𝑢 )  ↔  ¬  ∃ 𝑢  ∈  ( Fmla ‘ 𝑦 ) ( ∃ 𝑣  ∈  ( Fmla ‘ 𝑦 ) ∅  =  ( 𝑢 ⊼𝑔 𝑣 )  ∨  ∃ 𝑖  ∈  ω ∅  =  ∀𝑔 𝑖 𝑢 ) ) | 
						
							| 66 | 57 65 | sylib | ⊢ ( ( 𝑦  ∈  ω  ∧  ¬  ∅  ∈  ( Fmla ‘ 𝑦 ) )  →  ¬  ∃ 𝑢  ∈  ( Fmla ‘ 𝑦 ) ( ∃ 𝑣  ∈  ( Fmla ‘ 𝑦 ) ∅  =  ( 𝑢 ⊼𝑔 𝑣 )  ∨  ∃ 𝑖  ∈  ω ∅  =  ∀𝑔 𝑖 𝑢 ) ) | 
						
							| 67 |  | ioran | ⊢ ( ¬  ( ∅  ∈  ( Fmla ‘ 𝑦 )  ∨  ∃ 𝑢  ∈  ( Fmla ‘ 𝑦 ) ( ∃ 𝑣  ∈  ( Fmla ‘ 𝑦 ) ∅  =  ( 𝑢 ⊼𝑔 𝑣 )  ∨  ∃ 𝑖  ∈  ω ∅  =  ∀𝑔 𝑖 𝑢 ) )  ↔  ( ¬  ∅  ∈  ( Fmla ‘ 𝑦 )  ∧  ¬  ∃ 𝑢  ∈  ( Fmla ‘ 𝑦 ) ( ∃ 𝑣  ∈  ( Fmla ‘ 𝑦 ) ∅  =  ( 𝑢 ⊼𝑔 𝑣 )  ∨  ∃ 𝑖  ∈  ω ∅  =  ∀𝑔 𝑖 𝑢 ) ) ) | 
						
							| 68 | 36 66 67 | sylanbrc | ⊢ ( ( 𝑦  ∈  ω  ∧  ¬  ∅  ∈  ( Fmla ‘ 𝑦 ) )  →  ¬  ( ∅  ∈  ( Fmla ‘ 𝑦 )  ∨  ∃ 𝑢  ∈  ( Fmla ‘ 𝑦 ) ( ∃ 𝑣  ∈  ( Fmla ‘ 𝑦 ) ∅  =  ( 𝑢 ⊼𝑔 𝑣 )  ∨  ∃ 𝑖  ∈  ω ∅  =  ∀𝑔 𝑖 𝑢 ) ) ) | 
						
							| 69 |  | fmlasuc | ⊢ ( 𝑦  ∈  ω  →  ( Fmla ‘ suc  𝑦 )  =  ( ( Fmla ‘ 𝑦 )  ∪  { 𝑥  ∣  ∃ 𝑢  ∈  ( Fmla ‘ 𝑦 ) ( ∃ 𝑣  ∈  ( Fmla ‘ 𝑦 ) 𝑥  =  ( 𝑢 ⊼𝑔 𝑣 )  ∨  ∃ 𝑖  ∈  ω 𝑥  =  ∀𝑔 𝑖 𝑢 ) } ) ) | 
						
							| 70 | 69 | eleq2d | ⊢ ( 𝑦  ∈  ω  →  ( ∅  ∈  ( Fmla ‘ suc  𝑦 )  ↔  ∅  ∈  ( ( Fmla ‘ 𝑦 )  ∪  { 𝑥  ∣  ∃ 𝑢  ∈  ( Fmla ‘ 𝑦 ) ( ∃ 𝑣  ∈  ( Fmla ‘ 𝑦 ) 𝑥  =  ( 𝑢 ⊼𝑔 𝑣 )  ∨  ∃ 𝑖  ∈  ω 𝑥  =  ∀𝑔 𝑖 𝑢 ) } ) ) ) | 
						
							| 71 |  | elun | ⊢ ( ∅  ∈  ( ( Fmla ‘ 𝑦 )  ∪  { 𝑥  ∣  ∃ 𝑢  ∈  ( Fmla ‘ 𝑦 ) ( ∃ 𝑣  ∈  ( Fmla ‘ 𝑦 ) 𝑥  =  ( 𝑢 ⊼𝑔 𝑣 )  ∨  ∃ 𝑖  ∈  ω 𝑥  =  ∀𝑔 𝑖 𝑢 ) } )  ↔  ( ∅  ∈  ( Fmla ‘ 𝑦 )  ∨  ∅  ∈  { 𝑥  ∣  ∃ 𝑢  ∈  ( Fmla ‘ 𝑦 ) ( ∃ 𝑣  ∈  ( Fmla ‘ 𝑦 ) 𝑥  =  ( 𝑢 ⊼𝑔 𝑣 )  ∨  ∃ 𝑖  ∈  ω 𝑥  =  ∀𝑔 𝑖 𝑢 ) } ) ) | 
						
							| 72 |  | eqeq1 | ⊢ ( 𝑥  =  ∅  →  ( 𝑥  =  ( 𝑢 ⊼𝑔 𝑣 )  ↔  ∅  =  ( 𝑢 ⊼𝑔 𝑣 ) ) ) | 
						
							| 73 | 72 | rexbidv | ⊢ ( 𝑥  =  ∅  →  ( ∃ 𝑣  ∈  ( Fmla ‘ 𝑦 ) 𝑥  =  ( 𝑢 ⊼𝑔 𝑣 )  ↔  ∃ 𝑣  ∈  ( Fmla ‘ 𝑦 ) ∅  =  ( 𝑢 ⊼𝑔 𝑣 ) ) ) | 
						
							| 74 |  | eqeq1 | ⊢ ( 𝑥  =  ∅  →  ( 𝑥  =  ∀𝑔 𝑖 𝑢  ↔  ∅  =  ∀𝑔 𝑖 𝑢 ) ) | 
						
							| 75 | 74 | rexbidv | ⊢ ( 𝑥  =  ∅  →  ( ∃ 𝑖  ∈  ω 𝑥  =  ∀𝑔 𝑖 𝑢  ↔  ∃ 𝑖  ∈  ω ∅  =  ∀𝑔 𝑖 𝑢 ) ) | 
						
							| 76 | 73 75 | orbi12d | ⊢ ( 𝑥  =  ∅  →  ( ( ∃ 𝑣  ∈  ( Fmla ‘ 𝑦 ) 𝑥  =  ( 𝑢 ⊼𝑔 𝑣 )  ∨  ∃ 𝑖  ∈  ω 𝑥  =  ∀𝑔 𝑖 𝑢 )  ↔  ( ∃ 𝑣  ∈  ( Fmla ‘ 𝑦 ) ∅  =  ( 𝑢 ⊼𝑔 𝑣 )  ∨  ∃ 𝑖  ∈  ω ∅  =  ∀𝑔 𝑖 𝑢 ) ) ) | 
						
							| 77 | 76 | rexbidv | ⊢ ( 𝑥  =  ∅  →  ( ∃ 𝑢  ∈  ( Fmla ‘ 𝑦 ) ( ∃ 𝑣  ∈  ( Fmla ‘ 𝑦 ) 𝑥  =  ( 𝑢 ⊼𝑔 𝑣 )  ∨  ∃ 𝑖  ∈  ω 𝑥  =  ∀𝑔 𝑖 𝑢 )  ↔  ∃ 𝑢  ∈  ( Fmla ‘ 𝑦 ) ( ∃ 𝑣  ∈  ( Fmla ‘ 𝑦 ) ∅  =  ( 𝑢 ⊼𝑔 𝑣 )  ∨  ∃ 𝑖  ∈  ω ∅  =  ∀𝑔 𝑖 𝑢 ) ) ) | 
						
							| 78 | 13 77 | elab | ⊢ ( ∅  ∈  { 𝑥  ∣  ∃ 𝑢  ∈  ( Fmla ‘ 𝑦 ) ( ∃ 𝑣  ∈  ( Fmla ‘ 𝑦 ) 𝑥  =  ( 𝑢 ⊼𝑔 𝑣 )  ∨  ∃ 𝑖  ∈  ω 𝑥  =  ∀𝑔 𝑖 𝑢 ) }  ↔  ∃ 𝑢  ∈  ( Fmla ‘ 𝑦 ) ( ∃ 𝑣  ∈  ( Fmla ‘ 𝑦 ) ∅  =  ( 𝑢 ⊼𝑔 𝑣 )  ∨  ∃ 𝑖  ∈  ω ∅  =  ∀𝑔 𝑖 𝑢 ) ) | 
						
							| 79 | 78 | orbi2i | ⊢ ( ( ∅  ∈  ( Fmla ‘ 𝑦 )  ∨  ∅  ∈  { 𝑥  ∣  ∃ 𝑢  ∈  ( Fmla ‘ 𝑦 ) ( ∃ 𝑣  ∈  ( Fmla ‘ 𝑦 ) 𝑥  =  ( 𝑢 ⊼𝑔 𝑣 )  ∨  ∃ 𝑖  ∈  ω 𝑥  =  ∀𝑔 𝑖 𝑢 ) } )  ↔  ( ∅  ∈  ( Fmla ‘ 𝑦 )  ∨  ∃ 𝑢  ∈  ( Fmla ‘ 𝑦 ) ( ∃ 𝑣  ∈  ( Fmla ‘ 𝑦 ) ∅  =  ( 𝑢 ⊼𝑔 𝑣 )  ∨  ∃ 𝑖  ∈  ω ∅  =  ∀𝑔 𝑖 𝑢 ) ) ) | 
						
							| 80 | 71 79 | bitri | ⊢ ( ∅  ∈  ( ( Fmla ‘ 𝑦 )  ∪  { 𝑥  ∣  ∃ 𝑢  ∈  ( Fmla ‘ 𝑦 ) ( ∃ 𝑣  ∈  ( Fmla ‘ 𝑦 ) 𝑥  =  ( 𝑢 ⊼𝑔 𝑣 )  ∨  ∃ 𝑖  ∈  ω 𝑥  =  ∀𝑔 𝑖 𝑢 ) } )  ↔  ( ∅  ∈  ( Fmla ‘ 𝑦 )  ∨  ∃ 𝑢  ∈  ( Fmla ‘ 𝑦 ) ( ∃ 𝑣  ∈  ( Fmla ‘ 𝑦 ) ∅  =  ( 𝑢 ⊼𝑔 𝑣 )  ∨  ∃ 𝑖  ∈  ω ∅  =  ∀𝑔 𝑖 𝑢 ) ) ) | 
						
							| 81 | 70 80 | bitrdi | ⊢ ( 𝑦  ∈  ω  →  ( ∅  ∈  ( Fmla ‘ suc  𝑦 )  ↔  ( ∅  ∈  ( Fmla ‘ 𝑦 )  ∨  ∃ 𝑢  ∈  ( Fmla ‘ 𝑦 ) ( ∃ 𝑣  ∈  ( Fmla ‘ 𝑦 ) ∅  =  ( 𝑢 ⊼𝑔 𝑣 )  ∨  ∃ 𝑖  ∈  ω ∅  =  ∀𝑔 𝑖 𝑢 ) ) ) ) | 
						
							| 82 | 81 | adantr | ⊢ ( ( 𝑦  ∈  ω  ∧  ¬  ∅  ∈  ( Fmla ‘ 𝑦 ) )  →  ( ∅  ∈  ( Fmla ‘ suc  𝑦 )  ↔  ( ∅  ∈  ( Fmla ‘ 𝑦 )  ∨  ∃ 𝑢  ∈  ( Fmla ‘ 𝑦 ) ( ∃ 𝑣  ∈  ( Fmla ‘ 𝑦 ) ∅  =  ( 𝑢 ⊼𝑔 𝑣 )  ∨  ∃ 𝑖  ∈  ω ∅  =  ∀𝑔 𝑖 𝑢 ) ) ) ) | 
						
							| 83 | 68 82 | mtbird | ⊢ ( ( 𝑦  ∈  ω  ∧  ¬  ∅  ∈  ( Fmla ‘ 𝑦 ) )  →  ¬  ∅  ∈  ( Fmla ‘ suc  𝑦 ) ) | 
						
							| 84 | 83 | ex | ⊢ ( 𝑦  ∈  ω  →  ( ¬  ∅  ∈  ( Fmla ‘ 𝑦 )  →  ¬  ∅  ∈  ( Fmla ‘ suc  𝑦 ) ) ) | 
						
							| 85 | 3 6 9 12 35 84 | finds | ⊢ ( 𝑁  ∈  ω  →  ¬  ∅  ∈  ( Fmla ‘ 𝑁 ) ) | 
						
							| 86 |  | df-nel | ⊢ ( ∅  ∉  ( Fmla ‘ 𝑁 )  ↔  ¬  ∅  ∈  ( Fmla ‘ 𝑁 ) ) | 
						
							| 87 | 85 86 | sylibr | ⊢ ( 𝑁  ∈  ω  →  ∅  ∉  ( Fmla ‘ 𝑁 ) ) |