| Step |
Hyp |
Ref |
Expression |
| 1 |
|
ovex |
|- ( CC ^pm S ) e. _V |
| 2 |
1
|
rabex |
|- { f e. ( CC ^pm S ) | ( ( S Dn f ) ` n ) e. ( dom f -cn-> CC ) } e. _V |
| 3 |
|
eqid |
|- ( n e. NN0 |-> { f e. ( CC ^pm S ) | ( ( S Dn f ) ` n ) e. ( dom f -cn-> CC ) } ) = ( n e. NN0 |-> { f e. ( CC ^pm S ) | ( ( S Dn f ) ` n ) e. ( dom f -cn-> CC ) } ) |
| 4 |
2 3
|
fnmpti |
|- ( n e. NN0 |-> { f e. ( CC ^pm S ) | ( ( S Dn f ) ` n ) e. ( dom f -cn-> CC ) } ) Fn NN0 |
| 5 |
|
cpnfval |
|- ( S C_ CC -> ( C^n ` S ) = ( n e. NN0 |-> { f e. ( CC ^pm S ) | ( ( S Dn f ) ` n ) e. ( dom f -cn-> CC ) } ) ) |
| 6 |
5
|
fneq1d |
|- ( S C_ CC -> ( ( C^n ` S ) Fn NN0 <-> ( n e. NN0 |-> { f e. ( CC ^pm S ) | ( ( S Dn f ) ` n ) e. ( dom f -cn-> CC ) } ) Fn NN0 ) ) |
| 7 |
4 6
|
mpbiri |
|- ( S C_ CC -> ( C^n ` S ) Fn NN0 ) |