| Step |
Hyp |
Ref |
Expression |
| 1 |
|
cnex |
|- CC e. _V |
| 2 |
1
|
elpw2 |
|- ( S e. ~P CC <-> S C_ CC ) |
| 3 |
|
oveq2 |
|- ( s = S -> ( CC ^pm s ) = ( CC ^pm S ) ) |
| 4 |
|
oveq1 |
|- ( s = S -> ( s Dn f ) = ( S Dn f ) ) |
| 5 |
4
|
fveq1d |
|- ( s = S -> ( ( s Dn f ) ` n ) = ( ( S Dn f ) ` n ) ) |
| 6 |
5
|
eleq1d |
|- ( s = S -> ( ( ( s Dn f ) ` n ) e. ( dom f -cn-> CC ) <-> ( ( S Dn f ) ` n ) e. ( dom f -cn-> CC ) ) ) |
| 7 |
3 6
|
rabeqbidv |
|- ( s = S -> { f e. ( CC ^pm s ) | ( ( s Dn f ) ` n ) e. ( dom f -cn-> CC ) } = { f e. ( CC ^pm S ) | ( ( S Dn f ) ` n ) e. ( dom f -cn-> CC ) } ) |
| 8 |
7
|
mpteq2dv |
|- ( s = S -> ( n e. NN0 |-> { f e. ( CC ^pm s ) | ( ( s Dn f ) ` n ) e. ( dom f -cn-> CC ) } ) = ( n e. NN0 |-> { f e. ( CC ^pm S ) | ( ( S Dn f ) ` n ) e. ( dom f -cn-> CC ) } ) ) |
| 9 |
|
df-cpn |
|- C^n = ( s e. ~P CC |-> ( n e. NN0 |-> { f e. ( CC ^pm s ) | ( ( s Dn f ) ` n ) e. ( dom f -cn-> CC ) } ) ) |
| 10 |
|
nn0ex |
|- NN0 e. _V |
| 11 |
10
|
mptex |
|- ( n e. NN0 |-> { f e. ( CC ^pm S ) | ( ( S Dn f ) ` n ) e. ( dom f -cn-> CC ) } ) e. _V |
| 12 |
8 9 11
|
fvmpt |
|- ( S e. ~P CC -> ( C^n ` S ) = ( n e. NN0 |-> { f e. ( CC ^pm S ) | ( ( S Dn f ) ` n ) e. ( dom f -cn-> CC ) } ) ) |
| 13 |
2 12
|
sylbir |
|- ( S C_ CC -> ( C^n ` S ) = ( n e. NN0 |-> { f e. ( CC ^pm S ) | ( ( S Dn f ) ` n ) e. ( dom f -cn-> CC ) } ) ) |