Metamath Proof Explorer


Theorem cpnfval

Description: Condition for n-times continuous differentiability. (Contributed by Stefan O'Rear, 15-Nov-2014) (Revised by Mario Carneiro, 11-Feb-2015)

Ref Expression
Assertion cpnfval SCnS=n0f𝑝𝑚S|SDnfn:domfcn

Proof

Step Hyp Ref Expression
1 cnex V
2 1 elpw2 S𝒫S
3 oveq2 s=S𝑝𝑚s=𝑝𝑚S
4 oveq1 s=SsDnf=SDnf
5 4 fveq1d s=SsDnfn=SDnfn
6 5 eleq1d s=SsDnfn:domfcnSDnfn:domfcn
7 3 6 rabeqbidv s=Sf𝑝𝑚s|sDnfn:domfcn=f𝑝𝑚S|SDnfn:domfcn
8 7 mpteq2dv s=Sn0f𝑝𝑚s|sDnfn:domfcn=n0f𝑝𝑚S|SDnfn:domfcn
9 df-cpn Cn=s𝒫n0f𝑝𝑚s|sDnfn:domfcn
10 nn0ex 0V
11 10 mptex n0f𝑝𝑚S|SDnfn:domfcnV
12 8 9 11 fvmpt S𝒫CnS=n0f𝑝𝑚S|SDnfn:domfcn
13 2 12 sylbir SCnS=n0f𝑝𝑚S|SDnfn:domfcn