Metamath Proof Explorer


Theorem fncpn

Description: The C^n object is a function. (Contributed by Stefan O'Rear, 16-Nov-2014) (Revised by Mario Carneiro, 11-Feb-2015)

Ref Expression
Assertion fncpn SCnSFn0

Proof

Step Hyp Ref Expression
1 ovex 𝑝𝑚SV
2 1 rabex f𝑝𝑚S|SDnfn:domfcnV
3 eqid n0f𝑝𝑚S|SDnfn:domfcn=n0f𝑝𝑚S|SDnfn:domfcn
4 2 3 fnmpti n0f𝑝𝑚S|SDnfn:domfcnFn0
5 cpnfval SCnS=n0f𝑝𝑚S|SDnfn:domfcn
6 5 fneq1d SCnSFn0n0f𝑝𝑚S|SDnfn:domfcnFn0
7 4 6 mpbiri SCnSFn0