| Step |
Hyp |
Ref |
Expression |
| 1 |
|
ovex |
⊢ ( ℂ ↑pm 𝑆 ) ∈ V |
| 2 |
1
|
rabex |
⊢ { 𝑓 ∈ ( ℂ ↑pm 𝑆 ) ∣ ( ( 𝑆 D𝑛 𝑓 ) ‘ 𝑛 ) ∈ ( dom 𝑓 –cn→ ℂ ) } ∈ V |
| 3 |
|
eqid |
⊢ ( 𝑛 ∈ ℕ0 ↦ { 𝑓 ∈ ( ℂ ↑pm 𝑆 ) ∣ ( ( 𝑆 D𝑛 𝑓 ) ‘ 𝑛 ) ∈ ( dom 𝑓 –cn→ ℂ ) } ) = ( 𝑛 ∈ ℕ0 ↦ { 𝑓 ∈ ( ℂ ↑pm 𝑆 ) ∣ ( ( 𝑆 D𝑛 𝑓 ) ‘ 𝑛 ) ∈ ( dom 𝑓 –cn→ ℂ ) } ) |
| 4 |
2 3
|
fnmpti |
⊢ ( 𝑛 ∈ ℕ0 ↦ { 𝑓 ∈ ( ℂ ↑pm 𝑆 ) ∣ ( ( 𝑆 D𝑛 𝑓 ) ‘ 𝑛 ) ∈ ( dom 𝑓 –cn→ ℂ ) } ) Fn ℕ0 |
| 5 |
|
cpnfval |
⊢ ( 𝑆 ⊆ ℂ → ( 𝓑C𝑛 ‘ 𝑆 ) = ( 𝑛 ∈ ℕ0 ↦ { 𝑓 ∈ ( ℂ ↑pm 𝑆 ) ∣ ( ( 𝑆 D𝑛 𝑓 ) ‘ 𝑛 ) ∈ ( dom 𝑓 –cn→ ℂ ) } ) ) |
| 6 |
5
|
fneq1d |
⊢ ( 𝑆 ⊆ ℂ → ( ( 𝓑C𝑛 ‘ 𝑆 ) Fn ℕ0 ↔ ( 𝑛 ∈ ℕ0 ↦ { 𝑓 ∈ ( ℂ ↑pm 𝑆 ) ∣ ( ( 𝑆 D𝑛 𝑓 ) ‘ 𝑛 ) ∈ ( dom 𝑓 –cn→ ℂ ) } ) Fn ℕ0 ) ) |
| 7 |
4 6
|
mpbiri |
⊢ ( 𝑆 ⊆ ℂ → ( 𝓑C𝑛 ‘ 𝑆 ) Fn ℕ0 ) |