Metamath Proof Explorer


Theorem cpnfval

Description: Condition for n-times continuous differentiability. (Contributed by Stefan O'Rear, 15-Nov-2014) (Revised by Mario Carneiro, 11-Feb-2015)

Ref Expression
Assertion cpnfval ( 𝑆 ⊆ ℂ → ( 𝓑C𝑛𝑆 ) = ( 𝑛 ∈ ℕ0 ↦ { 𝑓 ∈ ( ℂ ↑pm 𝑆 ) ∣ ( ( 𝑆 D𝑛 𝑓 ) ‘ 𝑛 ) ∈ ( dom 𝑓cn→ ℂ ) } ) )

Proof

Step Hyp Ref Expression
1 cnex ℂ ∈ V
2 1 elpw2 ( 𝑆 ∈ 𝒫 ℂ ↔ 𝑆 ⊆ ℂ )
3 oveq2 ( 𝑠 = 𝑆 → ( ℂ ↑pm 𝑠 ) = ( ℂ ↑pm 𝑆 ) )
4 oveq1 ( 𝑠 = 𝑆 → ( 𝑠 D𝑛 𝑓 ) = ( 𝑆 D𝑛 𝑓 ) )
5 4 fveq1d ( 𝑠 = 𝑆 → ( ( 𝑠 D𝑛 𝑓 ) ‘ 𝑛 ) = ( ( 𝑆 D𝑛 𝑓 ) ‘ 𝑛 ) )
6 5 eleq1d ( 𝑠 = 𝑆 → ( ( ( 𝑠 D𝑛 𝑓 ) ‘ 𝑛 ) ∈ ( dom 𝑓cn→ ℂ ) ↔ ( ( 𝑆 D𝑛 𝑓 ) ‘ 𝑛 ) ∈ ( dom 𝑓cn→ ℂ ) ) )
7 3 6 rabeqbidv ( 𝑠 = 𝑆 → { 𝑓 ∈ ( ℂ ↑pm 𝑠 ) ∣ ( ( 𝑠 D𝑛 𝑓 ) ‘ 𝑛 ) ∈ ( dom 𝑓cn→ ℂ ) } = { 𝑓 ∈ ( ℂ ↑pm 𝑆 ) ∣ ( ( 𝑆 D𝑛 𝑓 ) ‘ 𝑛 ) ∈ ( dom 𝑓cn→ ℂ ) } )
8 7 mpteq2dv ( 𝑠 = 𝑆 → ( 𝑛 ∈ ℕ0 ↦ { 𝑓 ∈ ( ℂ ↑pm 𝑠 ) ∣ ( ( 𝑠 D𝑛 𝑓 ) ‘ 𝑛 ) ∈ ( dom 𝑓cn→ ℂ ) } ) = ( 𝑛 ∈ ℕ0 ↦ { 𝑓 ∈ ( ℂ ↑pm 𝑆 ) ∣ ( ( 𝑆 D𝑛 𝑓 ) ‘ 𝑛 ) ∈ ( dom 𝑓cn→ ℂ ) } ) )
9 df-cpn 𝓑C𝑛 = ( 𝑠 ∈ 𝒫 ℂ ↦ ( 𝑛 ∈ ℕ0 ↦ { 𝑓 ∈ ( ℂ ↑pm 𝑠 ) ∣ ( ( 𝑠 D𝑛 𝑓 ) ‘ 𝑛 ) ∈ ( dom 𝑓cn→ ℂ ) } ) )
10 nn0ex 0 ∈ V
11 10 mptex ( 𝑛 ∈ ℕ0 ↦ { 𝑓 ∈ ( ℂ ↑pm 𝑆 ) ∣ ( ( 𝑆 D𝑛 𝑓 ) ‘ 𝑛 ) ∈ ( dom 𝑓cn→ ℂ ) } ) ∈ V
12 8 9 11 fvmpt ( 𝑆 ∈ 𝒫 ℂ → ( 𝓑C𝑛𝑆 ) = ( 𝑛 ∈ ℕ0 ↦ { 𝑓 ∈ ( ℂ ↑pm 𝑆 ) ∣ ( ( 𝑆 D𝑛 𝑓 ) ‘ 𝑛 ) ∈ ( dom 𝑓cn→ ℂ ) } ) )
13 2 12 sylbir ( 𝑆 ⊆ ℂ → ( 𝓑C𝑛𝑆 ) = ( 𝑛 ∈ ℕ0 ↦ { 𝑓 ∈ ( ℂ ↑pm 𝑆 ) ∣ ( ( 𝑆 D𝑛 𝑓 ) ‘ 𝑛 ) ∈ ( dom 𝑓cn→ ℂ ) } ) )