Metamath Proof Explorer


Theorem elcpn

Description: Condition for n-times continuous differentiability. (Contributed by Stefan O'Rear, 15-Nov-2014) (Revised by Mario Carneiro, 11-Feb-2015)

Ref Expression
Assertion elcpn S N 0 F C n S N F 𝑝𝑚 S S D n F N : dom F cn

Proof

Step Hyp Ref Expression
1 cpnfval S C n S = n 0 f 𝑝𝑚 S | S D n f n : dom f cn
2 1 fveq1d S C n S N = n 0 f 𝑝𝑚 S | S D n f n : dom f cn N
3 fveq2 n = N S D n f n = S D n f N
4 3 eleq1d n = N S D n f n : dom f cn S D n f N : dom f cn
5 4 rabbidv n = N f 𝑝𝑚 S | S D n f n : dom f cn = f 𝑝𝑚 S | S D n f N : dom f cn
6 eqid n 0 f 𝑝𝑚 S | S D n f n : dom f cn = n 0 f 𝑝𝑚 S | S D n f n : dom f cn
7 ovex 𝑝𝑚 S V
8 7 rabex f 𝑝𝑚 S | S D n f N : dom f cn V
9 5 6 8 fvmpt N 0 n 0 f 𝑝𝑚 S | S D n f n : dom f cn N = f 𝑝𝑚 S | S D n f N : dom f cn
10 2 9 sylan9eq S N 0 C n S N = f 𝑝𝑚 S | S D n f N : dom f cn
11 10 eleq2d S N 0 F C n S N F f 𝑝𝑚 S | S D n f N : dom f cn
12 oveq2 f = F S D n f = S D n F
13 12 fveq1d f = F S D n f N = S D n F N
14 dmeq f = F dom f = dom F
15 14 oveq1d f = F dom f cn = dom F cn
16 13 15 eleq12d f = F S D n f N : dom f cn S D n F N : dom F cn
17 16 elrab F f 𝑝𝑚 S | S D n f N : dom f cn F 𝑝𝑚 S S D n F N : dom F cn
18 11 17 bitrdi S N 0 F C n S N F 𝑝𝑚 S S D n F N : dom F cn