Metamath Proof Explorer


Theorem cpnord

Description: C^n conditions are ordered by strength. (Contributed by Stefan O'Rear, 16-Nov-2014) (Revised by Mario Carneiro, 11-Feb-2015)

Ref Expression
Assertion cpnord SM0NMCnSNCnSM

Proof

Step Hyp Ref Expression
1 fveq2 n=MCnSn=CnSM
2 1 sseq1d n=MCnSnCnSMCnSMCnSM
3 2 imbi2d n=MSM0CnSnCnSMSM0CnSMCnSM
4 fveq2 n=mCnSn=CnSm
5 4 sseq1d n=mCnSnCnSMCnSmCnSM
6 5 imbi2d n=mSM0CnSnCnSMSM0CnSmCnSM
7 fveq2 n=m+1CnSn=CnSm+1
8 7 sseq1d n=m+1CnSnCnSMCnSm+1CnSM
9 8 imbi2d n=m+1SM0CnSnCnSMSM0CnSm+1CnSM
10 fveq2 n=NCnSn=CnSN
11 10 sseq1d n=NCnSnCnSMCnSNCnSM
12 11 imbi2d n=NSM0CnSnCnSMSM0CnSNCnSM
13 ssid CnSMCnSM
14 13 2a1i MSM0CnSMCnSM
15 simprl SM0mMf𝑝𝑚SSDnfm+1:domfcnf𝑝𝑚S
16 recnprss SS
17 16 ad2antrr SM0mMS
18 17 adantr SM0mMf𝑝𝑚SSDnfm+1:domfcnS
19 simplll SM0mMf𝑝𝑚SSDnfm+1:domfcnS
20 eluznn0 M0mMm0
21 20 adantll SM0mMm0
22 21 adantr SM0mMf𝑝𝑚SSDnfm+1:domfcnm0
23 dvnf Sf𝑝𝑚Sm0SDnfm:domSDnfm
24 19 15 22 23 syl3anc SM0mMf𝑝𝑚SSDnfm+1:domfcnSDnfm:domSDnfm
25 dvnbss Sf𝑝𝑚Sm0domSDnfmdomf
26 19 15 22 25 syl3anc SM0mMf𝑝𝑚SSDnfm+1:domfcndomSDnfmdomf
27 dvnp1 Sf𝑝𝑚Sm0SDnfm+1=SDSDnfm
28 18 15 22 27 syl3anc SM0mMf𝑝𝑚SSDnfm+1:domfcnSDnfm+1=SDSDnfm
29 simprr SM0mMf𝑝𝑚SSDnfm+1:domfcnSDnfm+1:domfcn
30 28 29 eqeltrrd SM0mMf𝑝𝑚SSDnfm+1:domfcnSDnfmS:domfcn
31 cncff SDnfmS:domfcnSDnfmS:domf
32 30 31 syl SM0mMf𝑝𝑚SSDnfm+1:domfcnSDnfmS:domf
33 32 fdmd SM0mMf𝑝𝑚SSDnfm+1:domfcndomSDnfmS=domf
34 cnex V
35 elpm2g VSf𝑝𝑚Sf:domfdomfS
36 34 19 35 sylancr SM0mMf𝑝𝑚SSDnfm+1:domfcnf𝑝𝑚Sf:domfdomfS
37 15 36 mpbid SM0mMf𝑝𝑚SSDnfm+1:domfcnf:domfdomfS
38 37 simprd SM0mMf𝑝𝑚SSDnfm+1:domfcndomfS
39 26 38 sstrd SM0mMf𝑝𝑚SSDnfm+1:domfcndomSDnfmS
40 18 24 39 dvbss SM0mMf𝑝𝑚SSDnfm+1:domfcndomSDnfmSdomSDnfm
41 33 40 eqsstrrd SM0mMf𝑝𝑚SSDnfm+1:domfcndomfdomSDnfm
42 26 41 eqssd SM0mMf𝑝𝑚SSDnfm+1:domfcndomSDnfm=domf
43 42 feq2d SM0mMf𝑝𝑚SSDnfm+1:domfcnSDnfm:domSDnfmSDnfm:domf
44 24 43 mpbid SM0mMf𝑝𝑚SSDnfm+1:domfcnSDnfm:domf
45 dvcn SSDnfm:domfdomfSdomSDnfmS=domfSDnfm:domfcn
46 18 44 38 33 45 syl31anc SM0mMf𝑝𝑚SSDnfm+1:domfcnSDnfm:domfcn
47 15 46 jca SM0mMf𝑝𝑚SSDnfm+1:domfcnf𝑝𝑚SSDnfm:domfcn
48 47 ex SM0mMf𝑝𝑚SSDnfm+1:domfcnf𝑝𝑚SSDnfm:domfcn
49 peano2nn0 m0m+10
50 21 49 syl SM0mMm+10
51 elcpn Sm+10fCnSm+1f𝑝𝑚SSDnfm+1:domfcn
52 17 50 51 syl2anc SM0mMfCnSm+1f𝑝𝑚SSDnfm+1:domfcn
53 elcpn Sm0fCnSmf𝑝𝑚SSDnfm:domfcn
54 17 21 53 syl2anc SM0mMfCnSmf𝑝𝑚SSDnfm:domfcn
55 48 52 54 3imtr4d SM0mMfCnSm+1fCnSm
56 55 ssrdv SM0mMCnSm+1CnSm
57 sstr2 CnSm+1CnSmCnSmCnSMCnSm+1CnSM
58 56 57 syl SM0mMCnSmCnSMCnSm+1CnSM
59 58 expcom mMSM0CnSmCnSMCnSm+1CnSM
60 59 a2d mMSM0CnSmCnSMSM0CnSm+1CnSM
61 3 6 9 12 14 60 uzind4 NMSM0CnSNCnSM
62 61 com12 SM0NMCnSNCnSM
63 62 3impia SM0NMCnSNCnSM