| Step |
Hyp |
Ref |
Expression |
| 1 |
|
fveq2 |
⊢ ( 𝑛 = 𝑀 → ( ( 𝓑C𝑛 ‘ 𝑆 ) ‘ 𝑛 ) = ( ( 𝓑C𝑛 ‘ 𝑆 ) ‘ 𝑀 ) ) |
| 2 |
1
|
sseq1d |
⊢ ( 𝑛 = 𝑀 → ( ( ( 𝓑C𝑛 ‘ 𝑆 ) ‘ 𝑛 ) ⊆ ( ( 𝓑C𝑛 ‘ 𝑆 ) ‘ 𝑀 ) ↔ ( ( 𝓑C𝑛 ‘ 𝑆 ) ‘ 𝑀 ) ⊆ ( ( 𝓑C𝑛 ‘ 𝑆 ) ‘ 𝑀 ) ) ) |
| 3 |
2
|
imbi2d |
⊢ ( 𝑛 = 𝑀 → ( ( ( 𝑆 ∈ { ℝ , ℂ } ∧ 𝑀 ∈ ℕ0 ) → ( ( 𝓑C𝑛 ‘ 𝑆 ) ‘ 𝑛 ) ⊆ ( ( 𝓑C𝑛 ‘ 𝑆 ) ‘ 𝑀 ) ) ↔ ( ( 𝑆 ∈ { ℝ , ℂ } ∧ 𝑀 ∈ ℕ0 ) → ( ( 𝓑C𝑛 ‘ 𝑆 ) ‘ 𝑀 ) ⊆ ( ( 𝓑C𝑛 ‘ 𝑆 ) ‘ 𝑀 ) ) ) ) |
| 4 |
|
fveq2 |
⊢ ( 𝑛 = 𝑚 → ( ( 𝓑C𝑛 ‘ 𝑆 ) ‘ 𝑛 ) = ( ( 𝓑C𝑛 ‘ 𝑆 ) ‘ 𝑚 ) ) |
| 5 |
4
|
sseq1d |
⊢ ( 𝑛 = 𝑚 → ( ( ( 𝓑C𝑛 ‘ 𝑆 ) ‘ 𝑛 ) ⊆ ( ( 𝓑C𝑛 ‘ 𝑆 ) ‘ 𝑀 ) ↔ ( ( 𝓑C𝑛 ‘ 𝑆 ) ‘ 𝑚 ) ⊆ ( ( 𝓑C𝑛 ‘ 𝑆 ) ‘ 𝑀 ) ) ) |
| 6 |
5
|
imbi2d |
⊢ ( 𝑛 = 𝑚 → ( ( ( 𝑆 ∈ { ℝ , ℂ } ∧ 𝑀 ∈ ℕ0 ) → ( ( 𝓑C𝑛 ‘ 𝑆 ) ‘ 𝑛 ) ⊆ ( ( 𝓑C𝑛 ‘ 𝑆 ) ‘ 𝑀 ) ) ↔ ( ( 𝑆 ∈ { ℝ , ℂ } ∧ 𝑀 ∈ ℕ0 ) → ( ( 𝓑C𝑛 ‘ 𝑆 ) ‘ 𝑚 ) ⊆ ( ( 𝓑C𝑛 ‘ 𝑆 ) ‘ 𝑀 ) ) ) ) |
| 7 |
|
fveq2 |
⊢ ( 𝑛 = ( 𝑚 + 1 ) → ( ( 𝓑C𝑛 ‘ 𝑆 ) ‘ 𝑛 ) = ( ( 𝓑C𝑛 ‘ 𝑆 ) ‘ ( 𝑚 + 1 ) ) ) |
| 8 |
7
|
sseq1d |
⊢ ( 𝑛 = ( 𝑚 + 1 ) → ( ( ( 𝓑C𝑛 ‘ 𝑆 ) ‘ 𝑛 ) ⊆ ( ( 𝓑C𝑛 ‘ 𝑆 ) ‘ 𝑀 ) ↔ ( ( 𝓑C𝑛 ‘ 𝑆 ) ‘ ( 𝑚 + 1 ) ) ⊆ ( ( 𝓑C𝑛 ‘ 𝑆 ) ‘ 𝑀 ) ) ) |
| 9 |
8
|
imbi2d |
⊢ ( 𝑛 = ( 𝑚 + 1 ) → ( ( ( 𝑆 ∈ { ℝ , ℂ } ∧ 𝑀 ∈ ℕ0 ) → ( ( 𝓑C𝑛 ‘ 𝑆 ) ‘ 𝑛 ) ⊆ ( ( 𝓑C𝑛 ‘ 𝑆 ) ‘ 𝑀 ) ) ↔ ( ( 𝑆 ∈ { ℝ , ℂ } ∧ 𝑀 ∈ ℕ0 ) → ( ( 𝓑C𝑛 ‘ 𝑆 ) ‘ ( 𝑚 + 1 ) ) ⊆ ( ( 𝓑C𝑛 ‘ 𝑆 ) ‘ 𝑀 ) ) ) ) |
| 10 |
|
fveq2 |
⊢ ( 𝑛 = 𝑁 → ( ( 𝓑C𝑛 ‘ 𝑆 ) ‘ 𝑛 ) = ( ( 𝓑C𝑛 ‘ 𝑆 ) ‘ 𝑁 ) ) |
| 11 |
10
|
sseq1d |
⊢ ( 𝑛 = 𝑁 → ( ( ( 𝓑C𝑛 ‘ 𝑆 ) ‘ 𝑛 ) ⊆ ( ( 𝓑C𝑛 ‘ 𝑆 ) ‘ 𝑀 ) ↔ ( ( 𝓑C𝑛 ‘ 𝑆 ) ‘ 𝑁 ) ⊆ ( ( 𝓑C𝑛 ‘ 𝑆 ) ‘ 𝑀 ) ) ) |
| 12 |
11
|
imbi2d |
⊢ ( 𝑛 = 𝑁 → ( ( ( 𝑆 ∈ { ℝ , ℂ } ∧ 𝑀 ∈ ℕ0 ) → ( ( 𝓑C𝑛 ‘ 𝑆 ) ‘ 𝑛 ) ⊆ ( ( 𝓑C𝑛 ‘ 𝑆 ) ‘ 𝑀 ) ) ↔ ( ( 𝑆 ∈ { ℝ , ℂ } ∧ 𝑀 ∈ ℕ0 ) → ( ( 𝓑C𝑛 ‘ 𝑆 ) ‘ 𝑁 ) ⊆ ( ( 𝓑C𝑛 ‘ 𝑆 ) ‘ 𝑀 ) ) ) ) |
| 13 |
|
ssid |
⊢ ( ( 𝓑C𝑛 ‘ 𝑆 ) ‘ 𝑀 ) ⊆ ( ( 𝓑C𝑛 ‘ 𝑆 ) ‘ 𝑀 ) |
| 14 |
13
|
2a1i |
⊢ ( 𝑀 ∈ ℤ → ( ( 𝑆 ∈ { ℝ , ℂ } ∧ 𝑀 ∈ ℕ0 ) → ( ( 𝓑C𝑛 ‘ 𝑆 ) ‘ 𝑀 ) ⊆ ( ( 𝓑C𝑛 ‘ 𝑆 ) ‘ 𝑀 ) ) ) |
| 15 |
|
simprl |
⊢ ( ( ( ( 𝑆 ∈ { ℝ , ℂ } ∧ 𝑀 ∈ ℕ0 ) ∧ 𝑚 ∈ ( ℤ≥ ‘ 𝑀 ) ) ∧ ( 𝑓 ∈ ( ℂ ↑pm 𝑆 ) ∧ ( ( 𝑆 D𝑛 𝑓 ) ‘ ( 𝑚 + 1 ) ) ∈ ( dom 𝑓 –cn→ ℂ ) ) ) → 𝑓 ∈ ( ℂ ↑pm 𝑆 ) ) |
| 16 |
|
recnprss |
⊢ ( 𝑆 ∈ { ℝ , ℂ } → 𝑆 ⊆ ℂ ) |
| 17 |
16
|
ad2antrr |
⊢ ( ( ( 𝑆 ∈ { ℝ , ℂ } ∧ 𝑀 ∈ ℕ0 ) ∧ 𝑚 ∈ ( ℤ≥ ‘ 𝑀 ) ) → 𝑆 ⊆ ℂ ) |
| 18 |
17
|
adantr |
⊢ ( ( ( ( 𝑆 ∈ { ℝ , ℂ } ∧ 𝑀 ∈ ℕ0 ) ∧ 𝑚 ∈ ( ℤ≥ ‘ 𝑀 ) ) ∧ ( 𝑓 ∈ ( ℂ ↑pm 𝑆 ) ∧ ( ( 𝑆 D𝑛 𝑓 ) ‘ ( 𝑚 + 1 ) ) ∈ ( dom 𝑓 –cn→ ℂ ) ) ) → 𝑆 ⊆ ℂ ) |
| 19 |
|
simplll |
⊢ ( ( ( ( 𝑆 ∈ { ℝ , ℂ } ∧ 𝑀 ∈ ℕ0 ) ∧ 𝑚 ∈ ( ℤ≥ ‘ 𝑀 ) ) ∧ ( 𝑓 ∈ ( ℂ ↑pm 𝑆 ) ∧ ( ( 𝑆 D𝑛 𝑓 ) ‘ ( 𝑚 + 1 ) ) ∈ ( dom 𝑓 –cn→ ℂ ) ) ) → 𝑆 ∈ { ℝ , ℂ } ) |
| 20 |
|
eluznn0 |
⊢ ( ( 𝑀 ∈ ℕ0 ∧ 𝑚 ∈ ( ℤ≥ ‘ 𝑀 ) ) → 𝑚 ∈ ℕ0 ) |
| 21 |
20
|
adantll |
⊢ ( ( ( 𝑆 ∈ { ℝ , ℂ } ∧ 𝑀 ∈ ℕ0 ) ∧ 𝑚 ∈ ( ℤ≥ ‘ 𝑀 ) ) → 𝑚 ∈ ℕ0 ) |
| 22 |
21
|
adantr |
⊢ ( ( ( ( 𝑆 ∈ { ℝ , ℂ } ∧ 𝑀 ∈ ℕ0 ) ∧ 𝑚 ∈ ( ℤ≥ ‘ 𝑀 ) ) ∧ ( 𝑓 ∈ ( ℂ ↑pm 𝑆 ) ∧ ( ( 𝑆 D𝑛 𝑓 ) ‘ ( 𝑚 + 1 ) ) ∈ ( dom 𝑓 –cn→ ℂ ) ) ) → 𝑚 ∈ ℕ0 ) |
| 23 |
|
dvnf |
⊢ ( ( 𝑆 ∈ { ℝ , ℂ } ∧ 𝑓 ∈ ( ℂ ↑pm 𝑆 ) ∧ 𝑚 ∈ ℕ0 ) → ( ( 𝑆 D𝑛 𝑓 ) ‘ 𝑚 ) : dom ( ( 𝑆 D𝑛 𝑓 ) ‘ 𝑚 ) ⟶ ℂ ) |
| 24 |
19 15 22 23
|
syl3anc |
⊢ ( ( ( ( 𝑆 ∈ { ℝ , ℂ } ∧ 𝑀 ∈ ℕ0 ) ∧ 𝑚 ∈ ( ℤ≥ ‘ 𝑀 ) ) ∧ ( 𝑓 ∈ ( ℂ ↑pm 𝑆 ) ∧ ( ( 𝑆 D𝑛 𝑓 ) ‘ ( 𝑚 + 1 ) ) ∈ ( dom 𝑓 –cn→ ℂ ) ) ) → ( ( 𝑆 D𝑛 𝑓 ) ‘ 𝑚 ) : dom ( ( 𝑆 D𝑛 𝑓 ) ‘ 𝑚 ) ⟶ ℂ ) |
| 25 |
|
dvnbss |
⊢ ( ( 𝑆 ∈ { ℝ , ℂ } ∧ 𝑓 ∈ ( ℂ ↑pm 𝑆 ) ∧ 𝑚 ∈ ℕ0 ) → dom ( ( 𝑆 D𝑛 𝑓 ) ‘ 𝑚 ) ⊆ dom 𝑓 ) |
| 26 |
19 15 22 25
|
syl3anc |
⊢ ( ( ( ( 𝑆 ∈ { ℝ , ℂ } ∧ 𝑀 ∈ ℕ0 ) ∧ 𝑚 ∈ ( ℤ≥ ‘ 𝑀 ) ) ∧ ( 𝑓 ∈ ( ℂ ↑pm 𝑆 ) ∧ ( ( 𝑆 D𝑛 𝑓 ) ‘ ( 𝑚 + 1 ) ) ∈ ( dom 𝑓 –cn→ ℂ ) ) ) → dom ( ( 𝑆 D𝑛 𝑓 ) ‘ 𝑚 ) ⊆ dom 𝑓 ) |
| 27 |
|
dvnp1 |
⊢ ( ( 𝑆 ⊆ ℂ ∧ 𝑓 ∈ ( ℂ ↑pm 𝑆 ) ∧ 𝑚 ∈ ℕ0 ) → ( ( 𝑆 D𝑛 𝑓 ) ‘ ( 𝑚 + 1 ) ) = ( 𝑆 D ( ( 𝑆 D𝑛 𝑓 ) ‘ 𝑚 ) ) ) |
| 28 |
18 15 22 27
|
syl3anc |
⊢ ( ( ( ( 𝑆 ∈ { ℝ , ℂ } ∧ 𝑀 ∈ ℕ0 ) ∧ 𝑚 ∈ ( ℤ≥ ‘ 𝑀 ) ) ∧ ( 𝑓 ∈ ( ℂ ↑pm 𝑆 ) ∧ ( ( 𝑆 D𝑛 𝑓 ) ‘ ( 𝑚 + 1 ) ) ∈ ( dom 𝑓 –cn→ ℂ ) ) ) → ( ( 𝑆 D𝑛 𝑓 ) ‘ ( 𝑚 + 1 ) ) = ( 𝑆 D ( ( 𝑆 D𝑛 𝑓 ) ‘ 𝑚 ) ) ) |
| 29 |
|
simprr |
⊢ ( ( ( ( 𝑆 ∈ { ℝ , ℂ } ∧ 𝑀 ∈ ℕ0 ) ∧ 𝑚 ∈ ( ℤ≥ ‘ 𝑀 ) ) ∧ ( 𝑓 ∈ ( ℂ ↑pm 𝑆 ) ∧ ( ( 𝑆 D𝑛 𝑓 ) ‘ ( 𝑚 + 1 ) ) ∈ ( dom 𝑓 –cn→ ℂ ) ) ) → ( ( 𝑆 D𝑛 𝑓 ) ‘ ( 𝑚 + 1 ) ) ∈ ( dom 𝑓 –cn→ ℂ ) ) |
| 30 |
28 29
|
eqeltrrd |
⊢ ( ( ( ( 𝑆 ∈ { ℝ , ℂ } ∧ 𝑀 ∈ ℕ0 ) ∧ 𝑚 ∈ ( ℤ≥ ‘ 𝑀 ) ) ∧ ( 𝑓 ∈ ( ℂ ↑pm 𝑆 ) ∧ ( ( 𝑆 D𝑛 𝑓 ) ‘ ( 𝑚 + 1 ) ) ∈ ( dom 𝑓 –cn→ ℂ ) ) ) → ( 𝑆 D ( ( 𝑆 D𝑛 𝑓 ) ‘ 𝑚 ) ) ∈ ( dom 𝑓 –cn→ ℂ ) ) |
| 31 |
|
cncff |
⊢ ( ( 𝑆 D ( ( 𝑆 D𝑛 𝑓 ) ‘ 𝑚 ) ) ∈ ( dom 𝑓 –cn→ ℂ ) → ( 𝑆 D ( ( 𝑆 D𝑛 𝑓 ) ‘ 𝑚 ) ) : dom 𝑓 ⟶ ℂ ) |
| 32 |
30 31
|
syl |
⊢ ( ( ( ( 𝑆 ∈ { ℝ , ℂ } ∧ 𝑀 ∈ ℕ0 ) ∧ 𝑚 ∈ ( ℤ≥ ‘ 𝑀 ) ) ∧ ( 𝑓 ∈ ( ℂ ↑pm 𝑆 ) ∧ ( ( 𝑆 D𝑛 𝑓 ) ‘ ( 𝑚 + 1 ) ) ∈ ( dom 𝑓 –cn→ ℂ ) ) ) → ( 𝑆 D ( ( 𝑆 D𝑛 𝑓 ) ‘ 𝑚 ) ) : dom 𝑓 ⟶ ℂ ) |
| 33 |
32
|
fdmd |
⊢ ( ( ( ( 𝑆 ∈ { ℝ , ℂ } ∧ 𝑀 ∈ ℕ0 ) ∧ 𝑚 ∈ ( ℤ≥ ‘ 𝑀 ) ) ∧ ( 𝑓 ∈ ( ℂ ↑pm 𝑆 ) ∧ ( ( 𝑆 D𝑛 𝑓 ) ‘ ( 𝑚 + 1 ) ) ∈ ( dom 𝑓 –cn→ ℂ ) ) ) → dom ( 𝑆 D ( ( 𝑆 D𝑛 𝑓 ) ‘ 𝑚 ) ) = dom 𝑓 ) |
| 34 |
|
cnex |
⊢ ℂ ∈ V |
| 35 |
|
elpm2g |
⊢ ( ( ℂ ∈ V ∧ 𝑆 ∈ { ℝ , ℂ } ) → ( 𝑓 ∈ ( ℂ ↑pm 𝑆 ) ↔ ( 𝑓 : dom 𝑓 ⟶ ℂ ∧ dom 𝑓 ⊆ 𝑆 ) ) ) |
| 36 |
34 19 35
|
sylancr |
⊢ ( ( ( ( 𝑆 ∈ { ℝ , ℂ } ∧ 𝑀 ∈ ℕ0 ) ∧ 𝑚 ∈ ( ℤ≥ ‘ 𝑀 ) ) ∧ ( 𝑓 ∈ ( ℂ ↑pm 𝑆 ) ∧ ( ( 𝑆 D𝑛 𝑓 ) ‘ ( 𝑚 + 1 ) ) ∈ ( dom 𝑓 –cn→ ℂ ) ) ) → ( 𝑓 ∈ ( ℂ ↑pm 𝑆 ) ↔ ( 𝑓 : dom 𝑓 ⟶ ℂ ∧ dom 𝑓 ⊆ 𝑆 ) ) ) |
| 37 |
15 36
|
mpbid |
⊢ ( ( ( ( 𝑆 ∈ { ℝ , ℂ } ∧ 𝑀 ∈ ℕ0 ) ∧ 𝑚 ∈ ( ℤ≥ ‘ 𝑀 ) ) ∧ ( 𝑓 ∈ ( ℂ ↑pm 𝑆 ) ∧ ( ( 𝑆 D𝑛 𝑓 ) ‘ ( 𝑚 + 1 ) ) ∈ ( dom 𝑓 –cn→ ℂ ) ) ) → ( 𝑓 : dom 𝑓 ⟶ ℂ ∧ dom 𝑓 ⊆ 𝑆 ) ) |
| 38 |
37
|
simprd |
⊢ ( ( ( ( 𝑆 ∈ { ℝ , ℂ } ∧ 𝑀 ∈ ℕ0 ) ∧ 𝑚 ∈ ( ℤ≥ ‘ 𝑀 ) ) ∧ ( 𝑓 ∈ ( ℂ ↑pm 𝑆 ) ∧ ( ( 𝑆 D𝑛 𝑓 ) ‘ ( 𝑚 + 1 ) ) ∈ ( dom 𝑓 –cn→ ℂ ) ) ) → dom 𝑓 ⊆ 𝑆 ) |
| 39 |
26 38
|
sstrd |
⊢ ( ( ( ( 𝑆 ∈ { ℝ , ℂ } ∧ 𝑀 ∈ ℕ0 ) ∧ 𝑚 ∈ ( ℤ≥ ‘ 𝑀 ) ) ∧ ( 𝑓 ∈ ( ℂ ↑pm 𝑆 ) ∧ ( ( 𝑆 D𝑛 𝑓 ) ‘ ( 𝑚 + 1 ) ) ∈ ( dom 𝑓 –cn→ ℂ ) ) ) → dom ( ( 𝑆 D𝑛 𝑓 ) ‘ 𝑚 ) ⊆ 𝑆 ) |
| 40 |
18 24 39
|
dvbss |
⊢ ( ( ( ( 𝑆 ∈ { ℝ , ℂ } ∧ 𝑀 ∈ ℕ0 ) ∧ 𝑚 ∈ ( ℤ≥ ‘ 𝑀 ) ) ∧ ( 𝑓 ∈ ( ℂ ↑pm 𝑆 ) ∧ ( ( 𝑆 D𝑛 𝑓 ) ‘ ( 𝑚 + 1 ) ) ∈ ( dom 𝑓 –cn→ ℂ ) ) ) → dom ( 𝑆 D ( ( 𝑆 D𝑛 𝑓 ) ‘ 𝑚 ) ) ⊆ dom ( ( 𝑆 D𝑛 𝑓 ) ‘ 𝑚 ) ) |
| 41 |
33 40
|
eqsstrrd |
⊢ ( ( ( ( 𝑆 ∈ { ℝ , ℂ } ∧ 𝑀 ∈ ℕ0 ) ∧ 𝑚 ∈ ( ℤ≥ ‘ 𝑀 ) ) ∧ ( 𝑓 ∈ ( ℂ ↑pm 𝑆 ) ∧ ( ( 𝑆 D𝑛 𝑓 ) ‘ ( 𝑚 + 1 ) ) ∈ ( dom 𝑓 –cn→ ℂ ) ) ) → dom 𝑓 ⊆ dom ( ( 𝑆 D𝑛 𝑓 ) ‘ 𝑚 ) ) |
| 42 |
26 41
|
eqssd |
⊢ ( ( ( ( 𝑆 ∈ { ℝ , ℂ } ∧ 𝑀 ∈ ℕ0 ) ∧ 𝑚 ∈ ( ℤ≥ ‘ 𝑀 ) ) ∧ ( 𝑓 ∈ ( ℂ ↑pm 𝑆 ) ∧ ( ( 𝑆 D𝑛 𝑓 ) ‘ ( 𝑚 + 1 ) ) ∈ ( dom 𝑓 –cn→ ℂ ) ) ) → dom ( ( 𝑆 D𝑛 𝑓 ) ‘ 𝑚 ) = dom 𝑓 ) |
| 43 |
42
|
feq2d |
⊢ ( ( ( ( 𝑆 ∈ { ℝ , ℂ } ∧ 𝑀 ∈ ℕ0 ) ∧ 𝑚 ∈ ( ℤ≥ ‘ 𝑀 ) ) ∧ ( 𝑓 ∈ ( ℂ ↑pm 𝑆 ) ∧ ( ( 𝑆 D𝑛 𝑓 ) ‘ ( 𝑚 + 1 ) ) ∈ ( dom 𝑓 –cn→ ℂ ) ) ) → ( ( ( 𝑆 D𝑛 𝑓 ) ‘ 𝑚 ) : dom ( ( 𝑆 D𝑛 𝑓 ) ‘ 𝑚 ) ⟶ ℂ ↔ ( ( 𝑆 D𝑛 𝑓 ) ‘ 𝑚 ) : dom 𝑓 ⟶ ℂ ) ) |
| 44 |
24 43
|
mpbid |
⊢ ( ( ( ( 𝑆 ∈ { ℝ , ℂ } ∧ 𝑀 ∈ ℕ0 ) ∧ 𝑚 ∈ ( ℤ≥ ‘ 𝑀 ) ) ∧ ( 𝑓 ∈ ( ℂ ↑pm 𝑆 ) ∧ ( ( 𝑆 D𝑛 𝑓 ) ‘ ( 𝑚 + 1 ) ) ∈ ( dom 𝑓 –cn→ ℂ ) ) ) → ( ( 𝑆 D𝑛 𝑓 ) ‘ 𝑚 ) : dom 𝑓 ⟶ ℂ ) |
| 45 |
|
dvcn |
⊢ ( ( ( 𝑆 ⊆ ℂ ∧ ( ( 𝑆 D𝑛 𝑓 ) ‘ 𝑚 ) : dom 𝑓 ⟶ ℂ ∧ dom 𝑓 ⊆ 𝑆 ) ∧ dom ( 𝑆 D ( ( 𝑆 D𝑛 𝑓 ) ‘ 𝑚 ) ) = dom 𝑓 ) → ( ( 𝑆 D𝑛 𝑓 ) ‘ 𝑚 ) ∈ ( dom 𝑓 –cn→ ℂ ) ) |
| 46 |
18 44 38 33 45
|
syl31anc |
⊢ ( ( ( ( 𝑆 ∈ { ℝ , ℂ } ∧ 𝑀 ∈ ℕ0 ) ∧ 𝑚 ∈ ( ℤ≥ ‘ 𝑀 ) ) ∧ ( 𝑓 ∈ ( ℂ ↑pm 𝑆 ) ∧ ( ( 𝑆 D𝑛 𝑓 ) ‘ ( 𝑚 + 1 ) ) ∈ ( dom 𝑓 –cn→ ℂ ) ) ) → ( ( 𝑆 D𝑛 𝑓 ) ‘ 𝑚 ) ∈ ( dom 𝑓 –cn→ ℂ ) ) |
| 47 |
15 46
|
jca |
⊢ ( ( ( ( 𝑆 ∈ { ℝ , ℂ } ∧ 𝑀 ∈ ℕ0 ) ∧ 𝑚 ∈ ( ℤ≥ ‘ 𝑀 ) ) ∧ ( 𝑓 ∈ ( ℂ ↑pm 𝑆 ) ∧ ( ( 𝑆 D𝑛 𝑓 ) ‘ ( 𝑚 + 1 ) ) ∈ ( dom 𝑓 –cn→ ℂ ) ) ) → ( 𝑓 ∈ ( ℂ ↑pm 𝑆 ) ∧ ( ( 𝑆 D𝑛 𝑓 ) ‘ 𝑚 ) ∈ ( dom 𝑓 –cn→ ℂ ) ) ) |
| 48 |
47
|
ex |
⊢ ( ( ( 𝑆 ∈ { ℝ , ℂ } ∧ 𝑀 ∈ ℕ0 ) ∧ 𝑚 ∈ ( ℤ≥ ‘ 𝑀 ) ) → ( ( 𝑓 ∈ ( ℂ ↑pm 𝑆 ) ∧ ( ( 𝑆 D𝑛 𝑓 ) ‘ ( 𝑚 + 1 ) ) ∈ ( dom 𝑓 –cn→ ℂ ) ) → ( 𝑓 ∈ ( ℂ ↑pm 𝑆 ) ∧ ( ( 𝑆 D𝑛 𝑓 ) ‘ 𝑚 ) ∈ ( dom 𝑓 –cn→ ℂ ) ) ) ) |
| 49 |
|
peano2nn0 |
⊢ ( 𝑚 ∈ ℕ0 → ( 𝑚 + 1 ) ∈ ℕ0 ) |
| 50 |
21 49
|
syl |
⊢ ( ( ( 𝑆 ∈ { ℝ , ℂ } ∧ 𝑀 ∈ ℕ0 ) ∧ 𝑚 ∈ ( ℤ≥ ‘ 𝑀 ) ) → ( 𝑚 + 1 ) ∈ ℕ0 ) |
| 51 |
|
elcpn |
⊢ ( ( 𝑆 ⊆ ℂ ∧ ( 𝑚 + 1 ) ∈ ℕ0 ) → ( 𝑓 ∈ ( ( 𝓑C𝑛 ‘ 𝑆 ) ‘ ( 𝑚 + 1 ) ) ↔ ( 𝑓 ∈ ( ℂ ↑pm 𝑆 ) ∧ ( ( 𝑆 D𝑛 𝑓 ) ‘ ( 𝑚 + 1 ) ) ∈ ( dom 𝑓 –cn→ ℂ ) ) ) ) |
| 52 |
17 50 51
|
syl2anc |
⊢ ( ( ( 𝑆 ∈ { ℝ , ℂ } ∧ 𝑀 ∈ ℕ0 ) ∧ 𝑚 ∈ ( ℤ≥ ‘ 𝑀 ) ) → ( 𝑓 ∈ ( ( 𝓑C𝑛 ‘ 𝑆 ) ‘ ( 𝑚 + 1 ) ) ↔ ( 𝑓 ∈ ( ℂ ↑pm 𝑆 ) ∧ ( ( 𝑆 D𝑛 𝑓 ) ‘ ( 𝑚 + 1 ) ) ∈ ( dom 𝑓 –cn→ ℂ ) ) ) ) |
| 53 |
|
elcpn |
⊢ ( ( 𝑆 ⊆ ℂ ∧ 𝑚 ∈ ℕ0 ) → ( 𝑓 ∈ ( ( 𝓑C𝑛 ‘ 𝑆 ) ‘ 𝑚 ) ↔ ( 𝑓 ∈ ( ℂ ↑pm 𝑆 ) ∧ ( ( 𝑆 D𝑛 𝑓 ) ‘ 𝑚 ) ∈ ( dom 𝑓 –cn→ ℂ ) ) ) ) |
| 54 |
17 21 53
|
syl2anc |
⊢ ( ( ( 𝑆 ∈ { ℝ , ℂ } ∧ 𝑀 ∈ ℕ0 ) ∧ 𝑚 ∈ ( ℤ≥ ‘ 𝑀 ) ) → ( 𝑓 ∈ ( ( 𝓑C𝑛 ‘ 𝑆 ) ‘ 𝑚 ) ↔ ( 𝑓 ∈ ( ℂ ↑pm 𝑆 ) ∧ ( ( 𝑆 D𝑛 𝑓 ) ‘ 𝑚 ) ∈ ( dom 𝑓 –cn→ ℂ ) ) ) ) |
| 55 |
48 52 54
|
3imtr4d |
⊢ ( ( ( 𝑆 ∈ { ℝ , ℂ } ∧ 𝑀 ∈ ℕ0 ) ∧ 𝑚 ∈ ( ℤ≥ ‘ 𝑀 ) ) → ( 𝑓 ∈ ( ( 𝓑C𝑛 ‘ 𝑆 ) ‘ ( 𝑚 + 1 ) ) → 𝑓 ∈ ( ( 𝓑C𝑛 ‘ 𝑆 ) ‘ 𝑚 ) ) ) |
| 56 |
55
|
ssrdv |
⊢ ( ( ( 𝑆 ∈ { ℝ , ℂ } ∧ 𝑀 ∈ ℕ0 ) ∧ 𝑚 ∈ ( ℤ≥ ‘ 𝑀 ) ) → ( ( 𝓑C𝑛 ‘ 𝑆 ) ‘ ( 𝑚 + 1 ) ) ⊆ ( ( 𝓑C𝑛 ‘ 𝑆 ) ‘ 𝑚 ) ) |
| 57 |
|
sstr2 |
⊢ ( ( ( 𝓑C𝑛 ‘ 𝑆 ) ‘ ( 𝑚 + 1 ) ) ⊆ ( ( 𝓑C𝑛 ‘ 𝑆 ) ‘ 𝑚 ) → ( ( ( 𝓑C𝑛 ‘ 𝑆 ) ‘ 𝑚 ) ⊆ ( ( 𝓑C𝑛 ‘ 𝑆 ) ‘ 𝑀 ) → ( ( 𝓑C𝑛 ‘ 𝑆 ) ‘ ( 𝑚 + 1 ) ) ⊆ ( ( 𝓑C𝑛 ‘ 𝑆 ) ‘ 𝑀 ) ) ) |
| 58 |
56 57
|
syl |
⊢ ( ( ( 𝑆 ∈ { ℝ , ℂ } ∧ 𝑀 ∈ ℕ0 ) ∧ 𝑚 ∈ ( ℤ≥ ‘ 𝑀 ) ) → ( ( ( 𝓑C𝑛 ‘ 𝑆 ) ‘ 𝑚 ) ⊆ ( ( 𝓑C𝑛 ‘ 𝑆 ) ‘ 𝑀 ) → ( ( 𝓑C𝑛 ‘ 𝑆 ) ‘ ( 𝑚 + 1 ) ) ⊆ ( ( 𝓑C𝑛 ‘ 𝑆 ) ‘ 𝑀 ) ) ) |
| 59 |
58
|
expcom |
⊢ ( 𝑚 ∈ ( ℤ≥ ‘ 𝑀 ) → ( ( 𝑆 ∈ { ℝ , ℂ } ∧ 𝑀 ∈ ℕ0 ) → ( ( ( 𝓑C𝑛 ‘ 𝑆 ) ‘ 𝑚 ) ⊆ ( ( 𝓑C𝑛 ‘ 𝑆 ) ‘ 𝑀 ) → ( ( 𝓑C𝑛 ‘ 𝑆 ) ‘ ( 𝑚 + 1 ) ) ⊆ ( ( 𝓑C𝑛 ‘ 𝑆 ) ‘ 𝑀 ) ) ) ) |
| 60 |
59
|
a2d |
⊢ ( 𝑚 ∈ ( ℤ≥ ‘ 𝑀 ) → ( ( ( 𝑆 ∈ { ℝ , ℂ } ∧ 𝑀 ∈ ℕ0 ) → ( ( 𝓑C𝑛 ‘ 𝑆 ) ‘ 𝑚 ) ⊆ ( ( 𝓑C𝑛 ‘ 𝑆 ) ‘ 𝑀 ) ) → ( ( 𝑆 ∈ { ℝ , ℂ } ∧ 𝑀 ∈ ℕ0 ) → ( ( 𝓑C𝑛 ‘ 𝑆 ) ‘ ( 𝑚 + 1 ) ) ⊆ ( ( 𝓑C𝑛 ‘ 𝑆 ) ‘ 𝑀 ) ) ) ) |
| 61 |
3 6 9 12 14 60
|
uzind4 |
⊢ ( 𝑁 ∈ ( ℤ≥ ‘ 𝑀 ) → ( ( 𝑆 ∈ { ℝ , ℂ } ∧ 𝑀 ∈ ℕ0 ) → ( ( 𝓑C𝑛 ‘ 𝑆 ) ‘ 𝑁 ) ⊆ ( ( 𝓑C𝑛 ‘ 𝑆 ) ‘ 𝑀 ) ) ) |
| 62 |
61
|
com12 |
⊢ ( ( 𝑆 ∈ { ℝ , ℂ } ∧ 𝑀 ∈ ℕ0 ) → ( 𝑁 ∈ ( ℤ≥ ‘ 𝑀 ) → ( ( 𝓑C𝑛 ‘ 𝑆 ) ‘ 𝑁 ) ⊆ ( ( 𝓑C𝑛 ‘ 𝑆 ) ‘ 𝑀 ) ) ) |
| 63 |
62
|
3impia |
⊢ ( ( 𝑆 ∈ { ℝ , ℂ } ∧ 𝑀 ∈ ℕ0 ∧ 𝑁 ∈ ( ℤ≥ ‘ 𝑀 ) ) → ( ( 𝓑C𝑛 ‘ 𝑆 ) ‘ 𝑁 ) ⊆ ( ( 𝓑C𝑛 ‘ 𝑆 ) ‘ 𝑀 ) ) |