| Step |
Hyp |
Ref |
Expression |
| 1 |
|
fveq2 |
|- ( n = M -> ( ( C^n ` S ) ` n ) = ( ( C^n ` S ) ` M ) ) |
| 2 |
1
|
sseq1d |
|- ( n = M -> ( ( ( C^n ` S ) ` n ) C_ ( ( C^n ` S ) ` M ) <-> ( ( C^n ` S ) ` M ) C_ ( ( C^n ` S ) ` M ) ) ) |
| 3 |
2
|
imbi2d |
|- ( n = M -> ( ( ( S e. { RR , CC } /\ M e. NN0 ) -> ( ( C^n ` S ) ` n ) C_ ( ( C^n ` S ) ` M ) ) <-> ( ( S e. { RR , CC } /\ M e. NN0 ) -> ( ( C^n ` S ) ` M ) C_ ( ( C^n ` S ) ` M ) ) ) ) |
| 4 |
|
fveq2 |
|- ( n = m -> ( ( C^n ` S ) ` n ) = ( ( C^n ` S ) ` m ) ) |
| 5 |
4
|
sseq1d |
|- ( n = m -> ( ( ( C^n ` S ) ` n ) C_ ( ( C^n ` S ) ` M ) <-> ( ( C^n ` S ) ` m ) C_ ( ( C^n ` S ) ` M ) ) ) |
| 6 |
5
|
imbi2d |
|- ( n = m -> ( ( ( S e. { RR , CC } /\ M e. NN0 ) -> ( ( C^n ` S ) ` n ) C_ ( ( C^n ` S ) ` M ) ) <-> ( ( S e. { RR , CC } /\ M e. NN0 ) -> ( ( C^n ` S ) ` m ) C_ ( ( C^n ` S ) ` M ) ) ) ) |
| 7 |
|
fveq2 |
|- ( n = ( m + 1 ) -> ( ( C^n ` S ) ` n ) = ( ( C^n ` S ) ` ( m + 1 ) ) ) |
| 8 |
7
|
sseq1d |
|- ( n = ( m + 1 ) -> ( ( ( C^n ` S ) ` n ) C_ ( ( C^n ` S ) ` M ) <-> ( ( C^n ` S ) ` ( m + 1 ) ) C_ ( ( C^n ` S ) ` M ) ) ) |
| 9 |
8
|
imbi2d |
|- ( n = ( m + 1 ) -> ( ( ( S e. { RR , CC } /\ M e. NN0 ) -> ( ( C^n ` S ) ` n ) C_ ( ( C^n ` S ) ` M ) ) <-> ( ( S e. { RR , CC } /\ M e. NN0 ) -> ( ( C^n ` S ) ` ( m + 1 ) ) C_ ( ( C^n ` S ) ` M ) ) ) ) |
| 10 |
|
fveq2 |
|- ( n = N -> ( ( C^n ` S ) ` n ) = ( ( C^n ` S ) ` N ) ) |
| 11 |
10
|
sseq1d |
|- ( n = N -> ( ( ( C^n ` S ) ` n ) C_ ( ( C^n ` S ) ` M ) <-> ( ( C^n ` S ) ` N ) C_ ( ( C^n ` S ) ` M ) ) ) |
| 12 |
11
|
imbi2d |
|- ( n = N -> ( ( ( S e. { RR , CC } /\ M e. NN0 ) -> ( ( C^n ` S ) ` n ) C_ ( ( C^n ` S ) ` M ) ) <-> ( ( S e. { RR , CC } /\ M e. NN0 ) -> ( ( C^n ` S ) ` N ) C_ ( ( C^n ` S ) ` M ) ) ) ) |
| 13 |
|
ssid |
|- ( ( C^n ` S ) ` M ) C_ ( ( C^n ` S ) ` M ) |
| 14 |
13
|
2a1i |
|- ( M e. ZZ -> ( ( S e. { RR , CC } /\ M e. NN0 ) -> ( ( C^n ` S ) ` M ) C_ ( ( C^n ` S ) ` M ) ) ) |
| 15 |
|
simprl |
|- ( ( ( ( S e. { RR , CC } /\ M e. NN0 ) /\ m e. ( ZZ>= ` M ) ) /\ ( f e. ( CC ^pm S ) /\ ( ( S Dn f ) ` ( m + 1 ) ) e. ( dom f -cn-> CC ) ) ) -> f e. ( CC ^pm S ) ) |
| 16 |
|
recnprss |
|- ( S e. { RR , CC } -> S C_ CC ) |
| 17 |
16
|
ad2antrr |
|- ( ( ( S e. { RR , CC } /\ M e. NN0 ) /\ m e. ( ZZ>= ` M ) ) -> S C_ CC ) |
| 18 |
17
|
adantr |
|- ( ( ( ( S e. { RR , CC } /\ M e. NN0 ) /\ m e. ( ZZ>= ` M ) ) /\ ( f e. ( CC ^pm S ) /\ ( ( S Dn f ) ` ( m + 1 ) ) e. ( dom f -cn-> CC ) ) ) -> S C_ CC ) |
| 19 |
|
simplll |
|- ( ( ( ( S e. { RR , CC } /\ M e. NN0 ) /\ m e. ( ZZ>= ` M ) ) /\ ( f e. ( CC ^pm S ) /\ ( ( S Dn f ) ` ( m + 1 ) ) e. ( dom f -cn-> CC ) ) ) -> S e. { RR , CC } ) |
| 20 |
|
eluznn0 |
|- ( ( M e. NN0 /\ m e. ( ZZ>= ` M ) ) -> m e. NN0 ) |
| 21 |
20
|
adantll |
|- ( ( ( S e. { RR , CC } /\ M e. NN0 ) /\ m e. ( ZZ>= ` M ) ) -> m e. NN0 ) |
| 22 |
21
|
adantr |
|- ( ( ( ( S e. { RR , CC } /\ M e. NN0 ) /\ m e. ( ZZ>= ` M ) ) /\ ( f e. ( CC ^pm S ) /\ ( ( S Dn f ) ` ( m + 1 ) ) e. ( dom f -cn-> CC ) ) ) -> m e. NN0 ) |
| 23 |
|
dvnf |
|- ( ( S e. { RR , CC } /\ f e. ( CC ^pm S ) /\ m e. NN0 ) -> ( ( S Dn f ) ` m ) : dom ( ( S Dn f ) ` m ) --> CC ) |
| 24 |
19 15 22 23
|
syl3anc |
|- ( ( ( ( S e. { RR , CC } /\ M e. NN0 ) /\ m e. ( ZZ>= ` M ) ) /\ ( f e. ( CC ^pm S ) /\ ( ( S Dn f ) ` ( m + 1 ) ) e. ( dom f -cn-> CC ) ) ) -> ( ( S Dn f ) ` m ) : dom ( ( S Dn f ) ` m ) --> CC ) |
| 25 |
|
dvnbss |
|- ( ( S e. { RR , CC } /\ f e. ( CC ^pm S ) /\ m e. NN0 ) -> dom ( ( S Dn f ) ` m ) C_ dom f ) |
| 26 |
19 15 22 25
|
syl3anc |
|- ( ( ( ( S e. { RR , CC } /\ M e. NN0 ) /\ m e. ( ZZ>= ` M ) ) /\ ( f e. ( CC ^pm S ) /\ ( ( S Dn f ) ` ( m + 1 ) ) e. ( dom f -cn-> CC ) ) ) -> dom ( ( S Dn f ) ` m ) C_ dom f ) |
| 27 |
|
dvnp1 |
|- ( ( S C_ CC /\ f e. ( CC ^pm S ) /\ m e. NN0 ) -> ( ( S Dn f ) ` ( m + 1 ) ) = ( S _D ( ( S Dn f ) ` m ) ) ) |
| 28 |
18 15 22 27
|
syl3anc |
|- ( ( ( ( S e. { RR , CC } /\ M e. NN0 ) /\ m e. ( ZZ>= ` M ) ) /\ ( f e. ( CC ^pm S ) /\ ( ( S Dn f ) ` ( m + 1 ) ) e. ( dom f -cn-> CC ) ) ) -> ( ( S Dn f ) ` ( m + 1 ) ) = ( S _D ( ( S Dn f ) ` m ) ) ) |
| 29 |
|
simprr |
|- ( ( ( ( S e. { RR , CC } /\ M e. NN0 ) /\ m e. ( ZZ>= ` M ) ) /\ ( f e. ( CC ^pm S ) /\ ( ( S Dn f ) ` ( m + 1 ) ) e. ( dom f -cn-> CC ) ) ) -> ( ( S Dn f ) ` ( m + 1 ) ) e. ( dom f -cn-> CC ) ) |
| 30 |
28 29
|
eqeltrrd |
|- ( ( ( ( S e. { RR , CC } /\ M e. NN0 ) /\ m e. ( ZZ>= ` M ) ) /\ ( f e. ( CC ^pm S ) /\ ( ( S Dn f ) ` ( m + 1 ) ) e. ( dom f -cn-> CC ) ) ) -> ( S _D ( ( S Dn f ) ` m ) ) e. ( dom f -cn-> CC ) ) |
| 31 |
|
cncff |
|- ( ( S _D ( ( S Dn f ) ` m ) ) e. ( dom f -cn-> CC ) -> ( S _D ( ( S Dn f ) ` m ) ) : dom f --> CC ) |
| 32 |
30 31
|
syl |
|- ( ( ( ( S e. { RR , CC } /\ M e. NN0 ) /\ m e. ( ZZ>= ` M ) ) /\ ( f e. ( CC ^pm S ) /\ ( ( S Dn f ) ` ( m + 1 ) ) e. ( dom f -cn-> CC ) ) ) -> ( S _D ( ( S Dn f ) ` m ) ) : dom f --> CC ) |
| 33 |
32
|
fdmd |
|- ( ( ( ( S e. { RR , CC } /\ M e. NN0 ) /\ m e. ( ZZ>= ` M ) ) /\ ( f e. ( CC ^pm S ) /\ ( ( S Dn f ) ` ( m + 1 ) ) e. ( dom f -cn-> CC ) ) ) -> dom ( S _D ( ( S Dn f ) ` m ) ) = dom f ) |
| 34 |
|
cnex |
|- CC e. _V |
| 35 |
|
elpm2g |
|- ( ( CC e. _V /\ S e. { RR , CC } ) -> ( f e. ( CC ^pm S ) <-> ( f : dom f --> CC /\ dom f C_ S ) ) ) |
| 36 |
34 19 35
|
sylancr |
|- ( ( ( ( S e. { RR , CC } /\ M e. NN0 ) /\ m e. ( ZZ>= ` M ) ) /\ ( f e. ( CC ^pm S ) /\ ( ( S Dn f ) ` ( m + 1 ) ) e. ( dom f -cn-> CC ) ) ) -> ( f e. ( CC ^pm S ) <-> ( f : dom f --> CC /\ dom f C_ S ) ) ) |
| 37 |
15 36
|
mpbid |
|- ( ( ( ( S e. { RR , CC } /\ M e. NN0 ) /\ m e. ( ZZ>= ` M ) ) /\ ( f e. ( CC ^pm S ) /\ ( ( S Dn f ) ` ( m + 1 ) ) e. ( dom f -cn-> CC ) ) ) -> ( f : dom f --> CC /\ dom f C_ S ) ) |
| 38 |
37
|
simprd |
|- ( ( ( ( S e. { RR , CC } /\ M e. NN0 ) /\ m e. ( ZZ>= ` M ) ) /\ ( f e. ( CC ^pm S ) /\ ( ( S Dn f ) ` ( m + 1 ) ) e. ( dom f -cn-> CC ) ) ) -> dom f C_ S ) |
| 39 |
26 38
|
sstrd |
|- ( ( ( ( S e. { RR , CC } /\ M e. NN0 ) /\ m e. ( ZZ>= ` M ) ) /\ ( f e. ( CC ^pm S ) /\ ( ( S Dn f ) ` ( m + 1 ) ) e. ( dom f -cn-> CC ) ) ) -> dom ( ( S Dn f ) ` m ) C_ S ) |
| 40 |
18 24 39
|
dvbss |
|- ( ( ( ( S e. { RR , CC } /\ M e. NN0 ) /\ m e. ( ZZ>= ` M ) ) /\ ( f e. ( CC ^pm S ) /\ ( ( S Dn f ) ` ( m + 1 ) ) e. ( dom f -cn-> CC ) ) ) -> dom ( S _D ( ( S Dn f ) ` m ) ) C_ dom ( ( S Dn f ) ` m ) ) |
| 41 |
33 40
|
eqsstrrd |
|- ( ( ( ( S e. { RR , CC } /\ M e. NN0 ) /\ m e. ( ZZ>= ` M ) ) /\ ( f e. ( CC ^pm S ) /\ ( ( S Dn f ) ` ( m + 1 ) ) e. ( dom f -cn-> CC ) ) ) -> dom f C_ dom ( ( S Dn f ) ` m ) ) |
| 42 |
26 41
|
eqssd |
|- ( ( ( ( S e. { RR , CC } /\ M e. NN0 ) /\ m e. ( ZZ>= ` M ) ) /\ ( f e. ( CC ^pm S ) /\ ( ( S Dn f ) ` ( m + 1 ) ) e. ( dom f -cn-> CC ) ) ) -> dom ( ( S Dn f ) ` m ) = dom f ) |
| 43 |
42
|
feq2d |
|- ( ( ( ( S e. { RR , CC } /\ M e. NN0 ) /\ m e. ( ZZ>= ` M ) ) /\ ( f e. ( CC ^pm S ) /\ ( ( S Dn f ) ` ( m + 1 ) ) e. ( dom f -cn-> CC ) ) ) -> ( ( ( S Dn f ) ` m ) : dom ( ( S Dn f ) ` m ) --> CC <-> ( ( S Dn f ) ` m ) : dom f --> CC ) ) |
| 44 |
24 43
|
mpbid |
|- ( ( ( ( S e. { RR , CC } /\ M e. NN0 ) /\ m e. ( ZZ>= ` M ) ) /\ ( f e. ( CC ^pm S ) /\ ( ( S Dn f ) ` ( m + 1 ) ) e. ( dom f -cn-> CC ) ) ) -> ( ( S Dn f ) ` m ) : dom f --> CC ) |
| 45 |
|
dvcn |
|- ( ( ( S C_ CC /\ ( ( S Dn f ) ` m ) : dom f --> CC /\ dom f C_ S ) /\ dom ( S _D ( ( S Dn f ) ` m ) ) = dom f ) -> ( ( S Dn f ) ` m ) e. ( dom f -cn-> CC ) ) |
| 46 |
18 44 38 33 45
|
syl31anc |
|- ( ( ( ( S e. { RR , CC } /\ M e. NN0 ) /\ m e. ( ZZ>= ` M ) ) /\ ( f e. ( CC ^pm S ) /\ ( ( S Dn f ) ` ( m + 1 ) ) e. ( dom f -cn-> CC ) ) ) -> ( ( S Dn f ) ` m ) e. ( dom f -cn-> CC ) ) |
| 47 |
15 46
|
jca |
|- ( ( ( ( S e. { RR , CC } /\ M e. NN0 ) /\ m e. ( ZZ>= ` M ) ) /\ ( f e. ( CC ^pm S ) /\ ( ( S Dn f ) ` ( m + 1 ) ) e. ( dom f -cn-> CC ) ) ) -> ( f e. ( CC ^pm S ) /\ ( ( S Dn f ) ` m ) e. ( dom f -cn-> CC ) ) ) |
| 48 |
47
|
ex |
|- ( ( ( S e. { RR , CC } /\ M e. NN0 ) /\ m e. ( ZZ>= ` M ) ) -> ( ( f e. ( CC ^pm S ) /\ ( ( S Dn f ) ` ( m + 1 ) ) e. ( dom f -cn-> CC ) ) -> ( f e. ( CC ^pm S ) /\ ( ( S Dn f ) ` m ) e. ( dom f -cn-> CC ) ) ) ) |
| 49 |
|
peano2nn0 |
|- ( m e. NN0 -> ( m + 1 ) e. NN0 ) |
| 50 |
21 49
|
syl |
|- ( ( ( S e. { RR , CC } /\ M e. NN0 ) /\ m e. ( ZZ>= ` M ) ) -> ( m + 1 ) e. NN0 ) |
| 51 |
|
elcpn |
|- ( ( S C_ CC /\ ( m + 1 ) e. NN0 ) -> ( f e. ( ( C^n ` S ) ` ( m + 1 ) ) <-> ( f e. ( CC ^pm S ) /\ ( ( S Dn f ) ` ( m + 1 ) ) e. ( dom f -cn-> CC ) ) ) ) |
| 52 |
17 50 51
|
syl2anc |
|- ( ( ( S e. { RR , CC } /\ M e. NN0 ) /\ m e. ( ZZ>= ` M ) ) -> ( f e. ( ( C^n ` S ) ` ( m + 1 ) ) <-> ( f e. ( CC ^pm S ) /\ ( ( S Dn f ) ` ( m + 1 ) ) e. ( dom f -cn-> CC ) ) ) ) |
| 53 |
|
elcpn |
|- ( ( S C_ CC /\ m e. NN0 ) -> ( f e. ( ( C^n ` S ) ` m ) <-> ( f e. ( CC ^pm S ) /\ ( ( S Dn f ) ` m ) e. ( dom f -cn-> CC ) ) ) ) |
| 54 |
17 21 53
|
syl2anc |
|- ( ( ( S e. { RR , CC } /\ M e. NN0 ) /\ m e. ( ZZ>= ` M ) ) -> ( f e. ( ( C^n ` S ) ` m ) <-> ( f e. ( CC ^pm S ) /\ ( ( S Dn f ) ` m ) e. ( dom f -cn-> CC ) ) ) ) |
| 55 |
48 52 54
|
3imtr4d |
|- ( ( ( S e. { RR , CC } /\ M e. NN0 ) /\ m e. ( ZZ>= ` M ) ) -> ( f e. ( ( C^n ` S ) ` ( m + 1 ) ) -> f e. ( ( C^n ` S ) ` m ) ) ) |
| 56 |
55
|
ssrdv |
|- ( ( ( S e. { RR , CC } /\ M e. NN0 ) /\ m e. ( ZZ>= ` M ) ) -> ( ( C^n ` S ) ` ( m + 1 ) ) C_ ( ( C^n ` S ) ` m ) ) |
| 57 |
|
sstr2 |
|- ( ( ( C^n ` S ) ` ( m + 1 ) ) C_ ( ( C^n ` S ) ` m ) -> ( ( ( C^n ` S ) ` m ) C_ ( ( C^n ` S ) ` M ) -> ( ( C^n ` S ) ` ( m + 1 ) ) C_ ( ( C^n ` S ) ` M ) ) ) |
| 58 |
56 57
|
syl |
|- ( ( ( S e. { RR , CC } /\ M e. NN0 ) /\ m e. ( ZZ>= ` M ) ) -> ( ( ( C^n ` S ) ` m ) C_ ( ( C^n ` S ) ` M ) -> ( ( C^n ` S ) ` ( m + 1 ) ) C_ ( ( C^n ` S ) ` M ) ) ) |
| 59 |
58
|
expcom |
|- ( m e. ( ZZ>= ` M ) -> ( ( S e. { RR , CC } /\ M e. NN0 ) -> ( ( ( C^n ` S ) ` m ) C_ ( ( C^n ` S ) ` M ) -> ( ( C^n ` S ) ` ( m + 1 ) ) C_ ( ( C^n ` S ) ` M ) ) ) ) |
| 60 |
59
|
a2d |
|- ( m e. ( ZZ>= ` M ) -> ( ( ( S e. { RR , CC } /\ M e. NN0 ) -> ( ( C^n ` S ) ` m ) C_ ( ( C^n ` S ) ` M ) ) -> ( ( S e. { RR , CC } /\ M e. NN0 ) -> ( ( C^n ` S ) ` ( m + 1 ) ) C_ ( ( C^n ` S ) ` M ) ) ) ) |
| 61 |
3 6 9 12 14 60
|
uzind4 |
|- ( N e. ( ZZ>= ` M ) -> ( ( S e. { RR , CC } /\ M e. NN0 ) -> ( ( C^n ` S ) ` N ) C_ ( ( C^n ` S ) ` M ) ) ) |
| 62 |
61
|
com12 |
|- ( ( S e. { RR , CC } /\ M e. NN0 ) -> ( N e. ( ZZ>= ` M ) -> ( ( C^n ` S ) ` N ) C_ ( ( C^n ` S ) ` M ) ) ) |
| 63 |
62
|
3impia |
|- ( ( S e. { RR , CC } /\ M e. NN0 /\ N e. ( ZZ>= ` M ) ) -> ( ( C^n ` S ) ` N ) C_ ( ( C^n ` S ) ` M ) ) |