Description: Closure of a finite product of positive reals. (Contributed by Scott Fenton, 14-Dec-2017)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | fprodcl.1 | |- ( ph -> A e. Fin ) |
|
| fprodrpcl.2 | |- ( ( ph /\ k e. A ) -> B e. RR+ ) |
||
| Assertion | fprodrpcl | |- ( ph -> prod_ k e. A B e. RR+ ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fprodcl.1 | |- ( ph -> A e. Fin ) |
|
| 2 | fprodrpcl.2 | |- ( ( ph /\ k e. A ) -> B e. RR+ ) |
|
| 3 | rpssre | |- RR+ C_ RR |
|
| 4 | ax-resscn | |- RR C_ CC |
|
| 5 | 3 4 | sstri | |- RR+ C_ CC |
| 6 | 5 | a1i | |- ( ph -> RR+ C_ CC ) |
| 7 | rpmulcl | |- ( ( x e. RR+ /\ y e. RR+ ) -> ( x x. y ) e. RR+ ) |
|
| 8 | 7 | adantl | |- ( ( ph /\ ( x e. RR+ /\ y e. RR+ ) ) -> ( x x. y ) e. RR+ ) |
| 9 | 1rp | |- 1 e. RR+ |
|
| 10 | 9 | a1i | |- ( ph -> 1 e. RR+ ) |
| 11 | 6 8 1 2 10 | fprodcllem | |- ( ph -> prod_ k e. A B e. RR+ ) |