Metamath Proof Explorer


Theorem fprodrpcl

Description: Closure of a finite product of positive reals. (Contributed by Scott Fenton, 14-Dec-2017)

Ref Expression
Hypotheses fprodcl.1 φAFin
fprodrpcl.2 φkAB+
Assertion fprodrpcl φkAB+

Proof

Step Hyp Ref Expression
1 fprodcl.1 φAFin
2 fprodrpcl.2 φkAB+
3 rpssre +
4 ax-resscn
5 3 4 sstri +
6 5 a1i φ+
7 rpmulcl x+y+xy+
8 7 adantl φx+y+xy+
9 1rp 1+
10 9 a1i φ1+
11 6 8 1 2 10 fprodcllem φkAB+