Metamath Proof Explorer


Theorem fprodcllem

Description: Finite product closure lemma. (Contributed by Scott Fenton, 14-Dec-2017)

Ref Expression
Hypotheses fprodcllem.1 φS
fprodcllem.2 φxSySxyS
fprodcllem.3 φAFin
fprodcllem.4 φkABS
fprodcllem.5 φ1S
Assertion fprodcllem φkABS

Proof

Step Hyp Ref Expression
1 fprodcllem.1 φS
2 fprodcllem.2 φxSySxyS
3 fprodcllem.3 φAFin
4 fprodcllem.4 φkABS
5 fprodcllem.5 φ1S
6 prodeq1 A=kAB=kB
7 prod0 kB=1
8 6 7 eqtrdi A=kAB=1
9 8 adantl φA=kAB=1
10 5 adantr φA=1S
11 9 10 eqeltrd φA=kABS
12 1 adantr φAS
13 2 adantlr φAxSySxyS
14 3 adantr φAAFin
15 4 adantlr φAkABS
16 simpr φAA
17 12 13 14 15 16 fprodcl2lem φAkABS
18 11 17 pm2.61dane φkABS