Metamath Proof Explorer


Theorem frege3

Description: Add antecedent to ax-frege2 . Special case of rp-frege3g . Proposition 3 of Frege1879 p. 29. (Contributed by RP, 24-Dec-2019) (Proof modification is discouraged.)

Ref Expression
Assertion frege3
|- ( ( ph -> ps ) -> ( ( ch -> ( ph -> ps ) ) -> ( ( ch -> ph ) -> ( ch -> ps ) ) ) )

Proof

Step Hyp Ref Expression
1 ax-frege2
 |-  ( ( ch -> ( ph -> ps ) ) -> ( ( ch -> ph ) -> ( ch -> ps ) ) )
2 ax-frege1
 |-  ( ( ( ch -> ( ph -> ps ) ) -> ( ( ch -> ph ) -> ( ch -> ps ) ) ) -> ( ( ph -> ps ) -> ( ( ch -> ( ph -> ps ) ) -> ( ( ch -> ph ) -> ( ch -> ps ) ) ) ) )
3 1 2 ax-mp
 |-  ( ( ph -> ps ) -> ( ( ch -> ( ph -> ps ) ) -> ( ( ch -> ph ) -> ( ch -> ps ) ) ) )