Description: Add antecedent to ax-frege2 . Special case of rp-frege3g . Proposition 3 of Frege1879 p. 29. (Contributed by RP, 24-Dec-2019) (Proof modification is discouraged.)
Ref | Expression | ||
---|---|---|---|
Assertion | frege3 | ⊢ ( ( 𝜑 → 𝜓 ) → ( ( 𝜒 → ( 𝜑 → 𝜓 ) ) → ( ( 𝜒 → 𝜑 ) → ( 𝜒 → 𝜓 ) ) ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ax-frege2 | ⊢ ( ( 𝜒 → ( 𝜑 → 𝜓 ) ) → ( ( 𝜒 → 𝜑 ) → ( 𝜒 → 𝜓 ) ) ) | |
2 | ax-frege1 | ⊢ ( ( ( 𝜒 → ( 𝜑 → 𝜓 ) ) → ( ( 𝜒 → 𝜑 ) → ( 𝜒 → 𝜓 ) ) ) → ( ( 𝜑 → 𝜓 ) → ( ( 𝜒 → ( 𝜑 → 𝜓 ) ) → ( ( 𝜒 → 𝜑 ) → ( 𝜒 → 𝜓 ) ) ) ) ) | |
3 | 1 2 | ax-mp | ⊢ ( ( 𝜑 → 𝜓 ) → ( ( 𝜒 → ( 𝜑 → 𝜓 ) ) → ( ( 𝜒 → 𝜑 ) → ( 𝜒 → 𝜓 ) ) ) ) |