Metamath Proof Explorer


Theorem frgrwopreglem2

Description: Lemma 2 for frgrwopreg . If the set A of vertices of degree K is not empty in a friendship graph with at least two vertices, then K must be greater than 1 . This is only an observation, which is not required for the proof the friendship theorem. (Contributed by Alexander van der Vekens, 30-Dec-2017) (Revised by AV, 2-Jan-2022)

Ref Expression
Hypotheses frgrwopreg.v
|- V = ( Vtx ` G )
frgrwopreg.d
|- D = ( VtxDeg ` G )
frgrwopreg.a
|- A = { x e. V | ( D ` x ) = K }
frgrwopreg.b
|- B = ( V \ A )
Assertion frgrwopreglem2
|- ( ( G e. FriendGraph /\ 1 < ( # ` V ) /\ A =/= (/) ) -> 2 <_ K )

Proof

Step Hyp Ref Expression
1 frgrwopreg.v
 |-  V = ( Vtx ` G )
2 frgrwopreg.d
 |-  D = ( VtxDeg ` G )
3 frgrwopreg.a
 |-  A = { x e. V | ( D ` x ) = K }
4 frgrwopreg.b
 |-  B = ( V \ A )
5 n0
 |-  ( A =/= (/) <-> E. x x e. A )
6 3 rabeq2i
 |-  ( x e. A <-> ( x e. V /\ ( D ` x ) = K ) )
7 1 vdgfrgrgt2
 |-  ( ( G e. FriendGraph /\ x e. V ) -> ( 1 < ( # ` V ) -> 2 <_ ( ( VtxDeg ` G ) ` x ) ) )
8 7 imp
 |-  ( ( ( G e. FriendGraph /\ x e. V ) /\ 1 < ( # ` V ) ) -> 2 <_ ( ( VtxDeg ` G ) ` x ) )
9 breq2
 |-  ( K = ( D ` x ) -> ( 2 <_ K <-> 2 <_ ( D ` x ) ) )
10 2 fveq1i
 |-  ( D ` x ) = ( ( VtxDeg ` G ) ` x )
11 10 breq2i
 |-  ( 2 <_ ( D ` x ) <-> 2 <_ ( ( VtxDeg ` G ) ` x ) )
12 9 11 syl6bb
 |-  ( K = ( D ` x ) -> ( 2 <_ K <-> 2 <_ ( ( VtxDeg ` G ) ` x ) ) )
13 12 eqcoms
 |-  ( ( D ` x ) = K -> ( 2 <_ K <-> 2 <_ ( ( VtxDeg ` G ) ` x ) ) )
14 8 13 syl5ibrcom
 |-  ( ( ( G e. FriendGraph /\ x e. V ) /\ 1 < ( # ` V ) ) -> ( ( D ` x ) = K -> 2 <_ K ) )
15 14 exp31
 |-  ( G e. FriendGraph -> ( x e. V -> ( 1 < ( # ` V ) -> ( ( D ` x ) = K -> 2 <_ K ) ) ) )
16 15 com14
 |-  ( ( D ` x ) = K -> ( x e. V -> ( 1 < ( # ` V ) -> ( G e. FriendGraph -> 2 <_ K ) ) ) )
17 16 impcom
 |-  ( ( x e. V /\ ( D ` x ) = K ) -> ( 1 < ( # ` V ) -> ( G e. FriendGraph -> 2 <_ K ) ) )
18 6 17 sylbi
 |-  ( x e. A -> ( 1 < ( # ` V ) -> ( G e. FriendGraph -> 2 <_ K ) ) )
19 18 exlimiv
 |-  ( E. x x e. A -> ( 1 < ( # ` V ) -> ( G e. FriendGraph -> 2 <_ K ) ) )
20 5 19 sylbi
 |-  ( A =/= (/) -> ( 1 < ( # ` V ) -> ( G e. FriendGraph -> 2 <_ K ) ) )
21 20 3imp31
 |-  ( ( G e. FriendGraph /\ 1 < ( # ` V ) /\ A =/= (/) ) -> 2 <_ K )