| Step | Hyp | Ref | Expression | 
						
							| 1 |  | frgrwopreg.v |  |-  V = ( Vtx ` G ) | 
						
							| 2 |  | frgrwopreg.d |  |-  D = ( VtxDeg ` G ) | 
						
							| 3 |  | frgrwopreg.a |  |-  A = { x e. V | ( D ` x ) = K } | 
						
							| 4 |  | frgrwopreg.b |  |-  B = ( V \ A ) | 
						
							| 5 |  | n0 |  |-  ( A =/= (/) <-> E. x x e. A ) | 
						
							| 6 | 3 | reqabi |  |-  ( x e. A <-> ( x e. V /\ ( D ` x ) = K ) ) | 
						
							| 7 | 1 | vdgfrgrgt2 |  |-  ( ( G e. FriendGraph /\ x e. V ) -> ( 1 < ( # ` V ) -> 2 <_ ( ( VtxDeg ` G ) ` x ) ) ) | 
						
							| 8 | 7 | imp |  |-  ( ( ( G e. FriendGraph /\ x e. V ) /\ 1 < ( # ` V ) ) -> 2 <_ ( ( VtxDeg ` G ) ` x ) ) | 
						
							| 9 |  | breq2 |  |-  ( K = ( D ` x ) -> ( 2 <_ K <-> 2 <_ ( D ` x ) ) ) | 
						
							| 10 | 2 | fveq1i |  |-  ( D ` x ) = ( ( VtxDeg ` G ) ` x ) | 
						
							| 11 | 10 | breq2i |  |-  ( 2 <_ ( D ` x ) <-> 2 <_ ( ( VtxDeg ` G ) ` x ) ) | 
						
							| 12 | 9 11 | bitrdi |  |-  ( K = ( D ` x ) -> ( 2 <_ K <-> 2 <_ ( ( VtxDeg ` G ) ` x ) ) ) | 
						
							| 13 | 12 | eqcoms |  |-  ( ( D ` x ) = K -> ( 2 <_ K <-> 2 <_ ( ( VtxDeg ` G ) ` x ) ) ) | 
						
							| 14 | 8 13 | syl5ibrcom |  |-  ( ( ( G e. FriendGraph /\ x e. V ) /\ 1 < ( # ` V ) ) -> ( ( D ` x ) = K -> 2 <_ K ) ) | 
						
							| 15 | 14 | exp31 |  |-  ( G e. FriendGraph -> ( x e. V -> ( 1 < ( # ` V ) -> ( ( D ` x ) = K -> 2 <_ K ) ) ) ) | 
						
							| 16 | 15 | com14 |  |-  ( ( D ` x ) = K -> ( x e. V -> ( 1 < ( # ` V ) -> ( G e. FriendGraph -> 2 <_ K ) ) ) ) | 
						
							| 17 | 16 | impcom |  |-  ( ( x e. V /\ ( D ` x ) = K ) -> ( 1 < ( # ` V ) -> ( G e. FriendGraph -> 2 <_ K ) ) ) | 
						
							| 18 | 6 17 | sylbi |  |-  ( x e. A -> ( 1 < ( # ` V ) -> ( G e. FriendGraph -> 2 <_ K ) ) ) | 
						
							| 19 | 18 | exlimiv |  |-  ( E. x x e. A -> ( 1 < ( # ` V ) -> ( G e. FriendGraph -> 2 <_ K ) ) ) | 
						
							| 20 | 5 19 | sylbi |  |-  ( A =/= (/) -> ( 1 < ( # ` V ) -> ( G e. FriendGraph -> 2 <_ K ) ) ) | 
						
							| 21 | 20 | 3imp31 |  |-  ( ( G e. FriendGraph /\ 1 < ( # ` V ) /\ A =/= (/) ) -> 2 <_ K ) |