| Step | Hyp | Ref | Expression | 
						
							| 1 |  | vdn1frgrv2.v |  |-  V = ( Vtx ` G ) | 
						
							| 2 | 1 | vdgn0frgrv2 |  |-  ( ( G e. FriendGraph /\ N e. V ) -> ( 1 < ( # ` V ) -> ( ( VtxDeg ` G ) ` N ) =/= 0 ) ) | 
						
							| 3 | 2 | imp |  |-  ( ( ( G e. FriendGraph /\ N e. V ) /\ 1 < ( # ` V ) ) -> ( ( VtxDeg ` G ) ` N ) =/= 0 ) | 
						
							| 4 | 1 | vdgn1frgrv2 |  |-  ( ( G e. FriendGraph /\ N e. V ) -> ( 1 < ( # ` V ) -> ( ( VtxDeg ` G ) ` N ) =/= 1 ) ) | 
						
							| 5 | 4 | imp |  |-  ( ( ( G e. FriendGraph /\ N e. V ) /\ 1 < ( # ` V ) ) -> ( ( VtxDeg ` G ) ` N ) =/= 1 ) | 
						
							| 6 | 1 | vtxdgelxnn0 |  |-  ( N e. V -> ( ( VtxDeg ` G ) ` N ) e. NN0* ) | 
						
							| 7 |  | xnn0n0n1ge2b |  |-  ( ( ( VtxDeg ` G ) ` N ) e. NN0* -> ( ( ( ( VtxDeg ` G ) ` N ) =/= 0 /\ ( ( VtxDeg ` G ) ` N ) =/= 1 ) <-> 2 <_ ( ( VtxDeg ` G ) ` N ) ) ) | 
						
							| 8 | 6 7 | syl |  |-  ( N e. V -> ( ( ( ( VtxDeg ` G ) ` N ) =/= 0 /\ ( ( VtxDeg ` G ) ` N ) =/= 1 ) <-> 2 <_ ( ( VtxDeg ` G ) ` N ) ) ) | 
						
							| 9 | 8 | ad2antlr |  |-  ( ( ( G e. FriendGraph /\ N e. V ) /\ 1 < ( # ` V ) ) -> ( ( ( ( VtxDeg ` G ) ` N ) =/= 0 /\ ( ( VtxDeg ` G ) ` N ) =/= 1 ) <-> 2 <_ ( ( VtxDeg ` G ) ` N ) ) ) | 
						
							| 10 | 3 5 9 | mpbi2and |  |-  ( ( ( G e. FriendGraph /\ N e. V ) /\ 1 < ( # ` V ) ) -> 2 <_ ( ( VtxDeg ` G ) ` N ) ) | 
						
							| 11 | 10 | ex |  |-  ( ( G e. FriendGraph /\ N e. V ) -> ( 1 < ( # ` V ) -> 2 <_ ( ( VtxDeg ` G ) ` N ) ) ) |