| Step | Hyp | Ref | Expression | 
						
							| 1 |  | vdn1frgrv2.v | ⊢ 𝑉  =  ( Vtx ‘ 𝐺 ) | 
						
							| 2 | 1 | vdgn0frgrv2 | ⊢ ( ( 𝐺  ∈   FriendGraph   ∧  𝑁  ∈  𝑉 )  →  ( 1  <  ( ♯ ‘ 𝑉 )  →  ( ( VtxDeg ‘ 𝐺 ) ‘ 𝑁 )  ≠  0 ) ) | 
						
							| 3 | 2 | imp | ⊢ ( ( ( 𝐺  ∈   FriendGraph   ∧  𝑁  ∈  𝑉 )  ∧  1  <  ( ♯ ‘ 𝑉 ) )  →  ( ( VtxDeg ‘ 𝐺 ) ‘ 𝑁 )  ≠  0 ) | 
						
							| 4 | 1 | vdgn1frgrv2 | ⊢ ( ( 𝐺  ∈   FriendGraph   ∧  𝑁  ∈  𝑉 )  →  ( 1  <  ( ♯ ‘ 𝑉 )  →  ( ( VtxDeg ‘ 𝐺 ) ‘ 𝑁 )  ≠  1 ) ) | 
						
							| 5 | 4 | imp | ⊢ ( ( ( 𝐺  ∈   FriendGraph   ∧  𝑁  ∈  𝑉 )  ∧  1  <  ( ♯ ‘ 𝑉 ) )  →  ( ( VtxDeg ‘ 𝐺 ) ‘ 𝑁 )  ≠  1 ) | 
						
							| 6 | 1 | vtxdgelxnn0 | ⊢ ( 𝑁  ∈  𝑉  →  ( ( VtxDeg ‘ 𝐺 ) ‘ 𝑁 )  ∈  ℕ0* ) | 
						
							| 7 |  | xnn0n0n1ge2b | ⊢ ( ( ( VtxDeg ‘ 𝐺 ) ‘ 𝑁 )  ∈  ℕ0*  →  ( ( ( ( VtxDeg ‘ 𝐺 ) ‘ 𝑁 )  ≠  0  ∧  ( ( VtxDeg ‘ 𝐺 ) ‘ 𝑁 )  ≠  1 )  ↔  2  ≤  ( ( VtxDeg ‘ 𝐺 ) ‘ 𝑁 ) ) ) | 
						
							| 8 | 6 7 | syl | ⊢ ( 𝑁  ∈  𝑉  →  ( ( ( ( VtxDeg ‘ 𝐺 ) ‘ 𝑁 )  ≠  0  ∧  ( ( VtxDeg ‘ 𝐺 ) ‘ 𝑁 )  ≠  1 )  ↔  2  ≤  ( ( VtxDeg ‘ 𝐺 ) ‘ 𝑁 ) ) ) | 
						
							| 9 | 8 | ad2antlr | ⊢ ( ( ( 𝐺  ∈   FriendGraph   ∧  𝑁  ∈  𝑉 )  ∧  1  <  ( ♯ ‘ 𝑉 ) )  →  ( ( ( ( VtxDeg ‘ 𝐺 ) ‘ 𝑁 )  ≠  0  ∧  ( ( VtxDeg ‘ 𝐺 ) ‘ 𝑁 )  ≠  1 )  ↔  2  ≤  ( ( VtxDeg ‘ 𝐺 ) ‘ 𝑁 ) ) ) | 
						
							| 10 | 3 5 9 | mpbi2and | ⊢ ( ( ( 𝐺  ∈   FriendGraph   ∧  𝑁  ∈  𝑉 )  ∧  1  <  ( ♯ ‘ 𝑉 ) )  →  2  ≤  ( ( VtxDeg ‘ 𝐺 ) ‘ 𝑁 ) ) | 
						
							| 11 | 10 | ex | ⊢ ( ( 𝐺  ∈   FriendGraph   ∧  𝑁  ∈  𝑉 )  →  ( 1  <  ( ♯ ‘ 𝑉 )  →  2  ≤  ( ( VtxDeg ‘ 𝐺 ) ‘ 𝑁 ) ) ) |