Metamath Proof Explorer


Theorem vdgfrgrgt2

Description: Any vertex in a friendship graph (with more than one vertex - then, actually, the graph must have at least three vertices, because otherwise, it would not be a friendship graph) has at least degree 2, see remark 3 in MertziosUnger p. 153 (after Proposition 1): "It follows that deg(v) >= 2 for every node v of a friendship graph". (Contributed by Alexander van der Vekens, 21-Dec-2017) (Revised by AV, 5-Apr-2021)

Ref Expression
Hypothesis vdn1frgrv2.v V = Vtx G
Assertion vdgfrgrgt2 G FriendGraph N V 1 < V 2 VtxDeg G N

Proof

Step Hyp Ref Expression
1 vdn1frgrv2.v V = Vtx G
2 1 vdgn0frgrv2 G FriendGraph N V 1 < V VtxDeg G N 0
3 2 imp G FriendGraph N V 1 < V VtxDeg G N 0
4 1 vdgn1frgrv2 G FriendGraph N V 1 < V VtxDeg G N 1
5 4 imp G FriendGraph N V 1 < V VtxDeg G N 1
6 1 vtxdgelxnn0 N V VtxDeg G N 0 *
7 xnn0n0n1ge2b VtxDeg G N 0 * VtxDeg G N 0 VtxDeg G N 1 2 VtxDeg G N
8 6 7 syl N V VtxDeg G N 0 VtxDeg G N 1 2 VtxDeg G N
9 8 ad2antlr G FriendGraph N V 1 < V VtxDeg G N 0 VtxDeg G N 1 2 VtxDeg G N
10 3 5 9 mpbi2and G FriendGraph N V 1 < V 2 VtxDeg G N
11 10 ex G FriendGraph N V 1 < V 2 VtxDeg G N