Metamath Proof Explorer


Theorem frlmfzolen

Description: The dimension of a vector of a module with indices from 0 to N - 1 . (Contributed by SN, 1-Sep-2023)

Ref Expression
Hypotheses frlmfzowrd.w
|- W = ( K freeLMod ( 0 ..^ N ) )
frlmfzowrd.b
|- B = ( Base ` W )
frlmfzowrd.s
|- S = ( Base ` K )
Assertion frlmfzolen
|- ( ( N e. NN0 /\ X e. B ) -> ( # ` X ) = N )

Proof

Step Hyp Ref Expression
1 frlmfzowrd.w
 |-  W = ( K freeLMod ( 0 ..^ N ) )
2 frlmfzowrd.b
 |-  B = ( Base ` W )
3 frlmfzowrd.s
 |-  S = ( Base ` K )
4 ovexd
 |-  ( N e. NN0 -> ( 0 ..^ N ) e. _V )
5 1 3 2 frlmbasf
 |-  ( ( ( 0 ..^ N ) e. _V /\ X e. B ) -> X : ( 0 ..^ N ) --> S )
6 4 5 sylan
 |-  ( ( N e. NN0 /\ X e. B ) -> X : ( 0 ..^ N ) --> S )
7 fnfzo0hash
 |-  ( ( N e. NN0 /\ X : ( 0 ..^ N ) --> S ) -> ( # ` X ) = N )
8 6 7 syldan
 |-  ( ( N e. NN0 /\ X e. B ) -> ( # ` X ) = N )