Description: The dimension of a vector of a module with indices from 0 to N - 1 . (Contributed by SN, 1-Sep-2023)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | frlmfzowrd.w | |- W = ( K freeLMod ( 0 ..^ N ) ) |
|
| frlmfzowrd.b | |- B = ( Base ` W ) |
||
| frlmfzowrd.s | |- S = ( Base ` K ) |
||
| Assertion | frlmfzolen | |- ( ( N e. NN0 /\ X e. B ) -> ( # ` X ) = N ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | frlmfzowrd.w | |- W = ( K freeLMod ( 0 ..^ N ) ) |
|
| 2 | frlmfzowrd.b | |- B = ( Base ` W ) |
|
| 3 | frlmfzowrd.s | |- S = ( Base ` K ) |
|
| 4 | ovexd | |- ( N e. NN0 -> ( 0 ..^ N ) e. _V ) |
|
| 5 | 1 3 2 | frlmbasf | |- ( ( ( 0 ..^ N ) e. _V /\ X e. B ) -> X : ( 0 ..^ N ) --> S ) |
| 6 | 4 5 | sylan | |- ( ( N e. NN0 /\ X e. B ) -> X : ( 0 ..^ N ) --> S ) |
| 7 | fnfzo0hash | |- ( ( N e. NN0 /\ X : ( 0 ..^ N ) --> S ) -> ( # ` X ) = N ) |
|
| 8 | 6 7 | syldan | |- ( ( N e. NN0 /\ X e. B ) -> ( # ` X ) = N ) |