| Step |
Hyp |
Ref |
Expression |
| 1 |
|
frlmfzowrd.w |
|- W = ( K freeLMod ( 0 ..^ N ) ) |
| 2 |
|
frlmfzowrd.b |
|- B = ( Base ` W ) |
| 3 |
|
frlmfzowrd.s |
|- S = ( Base ` K ) |
| 4 |
1 2 3
|
frlmfzowrd |
|- ( X e. B -> X e. Word S ) |
| 5 |
4
|
a1i |
|- ( ( K e. V /\ N e. NN0 ) -> ( X e. B -> X e. Word S ) ) |
| 6 |
1 2 3
|
frlmfzolen |
|- ( ( N e. NN0 /\ X e. B ) -> ( # ` X ) = N ) |
| 7 |
6
|
ex |
|- ( N e. NN0 -> ( X e. B -> ( # ` X ) = N ) ) |
| 8 |
7
|
adantl |
|- ( ( K e. V /\ N e. NN0 ) -> ( X e. B -> ( # ` X ) = N ) ) |
| 9 |
5 8
|
jcad |
|- ( ( K e. V /\ N e. NN0 ) -> ( X e. B -> ( X e. Word S /\ ( # ` X ) = N ) ) ) |
| 10 |
|
simp3l |
|- ( ( K e. V /\ N e. NN0 /\ ( X e. Word S /\ ( # ` X ) = N ) ) -> X e. Word S ) |
| 11 |
|
wrdf |
|- ( X e. Word S -> X : ( 0 ..^ ( # ` X ) ) --> S ) |
| 12 |
10 11
|
syl |
|- ( ( K e. V /\ N e. NN0 /\ ( X e. Word S /\ ( # ` X ) = N ) ) -> X : ( 0 ..^ ( # ` X ) ) --> S ) |
| 13 |
|
simp3r |
|- ( ( K e. V /\ N e. NN0 /\ ( X e. Word S /\ ( # ` X ) = N ) ) -> ( # ` X ) = N ) |
| 14 |
13
|
oveq2d |
|- ( ( K e. V /\ N e. NN0 /\ ( X e. Word S /\ ( # ` X ) = N ) ) -> ( 0 ..^ ( # ` X ) ) = ( 0 ..^ N ) ) |
| 15 |
14
|
feq2d |
|- ( ( K e. V /\ N e. NN0 /\ ( X e. Word S /\ ( # ` X ) = N ) ) -> ( X : ( 0 ..^ ( # ` X ) ) --> S <-> X : ( 0 ..^ N ) --> S ) ) |
| 16 |
12 15
|
mpbid |
|- ( ( K e. V /\ N e. NN0 /\ ( X e. Word S /\ ( # ` X ) = N ) ) -> X : ( 0 ..^ N ) --> S ) |
| 17 |
|
simp1 |
|- ( ( K e. V /\ N e. NN0 /\ ( X e. Word S /\ ( # ` X ) = N ) ) -> K e. V ) |
| 18 |
|
fzofi |
|- ( 0 ..^ N ) e. Fin |
| 19 |
1 3 2
|
frlmfielbas |
|- ( ( K e. V /\ ( 0 ..^ N ) e. Fin ) -> ( X e. B <-> X : ( 0 ..^ N ) --> S ) ) |
| 20 |
17 18 19
|
sylancl |
|- ( ( K e. V /\ N e. NN0 /\ ( X e. Word S /\ ( # ` X ) = N ) ) -> ( X e. B <-> X : ( 0 ..^ N ) --> S ) ) |
| 21 |
16 20
|
mpbird |
|- ( ( K e. V /\ N e. NN0 /\ ( X e. Word S /\ ( # ` X ) = N ) ) -> X e. B ) |
| 22 |
21
|
3expia |
|- ( ( K e. V /\ N e. NN0 ) -> ( ( X e. Word S /\ ( # ` X ) = N ) -> X e. B ) ) |
| 23 |
9 22
|
impbid |
|- ( ( K e. V /\ N e. NN0 ) -> ( X e. B <-> ( X e. Word S /\ ( # ` X ) = N ) ) ) |