Step |
Hyp |
Ref |
Expression |
1 |
|
frlmfzowrd.w |
⊢ 𝑊 = ( 𝐾 freeLMod ( 0 ..^ 𝑁 ) ) |
2 |
|
frlmfzowrd.b |
⊢ 𝐵 = ( Base ‘ 𝑊 ) |
3 |
|
frlmfzowrd.s |
⊢ 𝑆 = ( Base ‘ 𝐾 ) |
4 |
1 2 3
|
frlmfzowrd |
⊢ ( 𝑋 ∈ 𝐵 → 𝑋 ∈ Word 𝑆 ) |
5 |
4
|
a1i |
⊢ ( ( 𝐾 ∈ 𝑉 ∧ 𝑁 ∈ ℕ0 ) → ( 𝑋 ∈ 𝐵 → 𝑋 ∈ Word 𝑆 ) ) |
6 |
1 2 3
|
frlmfzolen |
⊢ ( ( 𝑁 ∈ ℕ0 ∧ 𝑋 ∈ 𝐵 ) → ( ♯ ‘ 𝑋 ) = 𝑁 ) |
7 |
6
|
ex |
⊢ ( 𝑁 ∈ ℕ0 → ( 𝑋 ∈ 𝐵 → ( ♯ ‘ 𝑋 ) = 𝑁 ) ) |
8 |
7
|
adantl |
⊢ ( ( 𝐾 ∈ 𝑉 ∧ 𝑁 ∈ ℕ0 ) → ( 𝑋 ∈ 𝐵 → ( ♯ ‘ 𝑋 ) = 𝑁 ) ) |
9 |
5 8
|
jcad |
⊢ ( ( 𝐾 ∈ 𝑉 ∧ 𝑁 ∈ ℕ0 ) → ( 𝑋 ∈ 𝐵 → ( 𝑋 ∈ Word 𝑆 ∧ ( ♯ ‘ 𝑋 ) = 𝑁 ) ) ) |
10 |
|
simp3l |
⊢ ( ( 𝐾 ∈ 𝑉 ∧ 𝑁 ∈ ℕ0 ∧ ( 𝑋 ∈ Word 𝑆 ∧ ( ♯ ‘ 𝑋 ) = 𝑁 ) ) → 𝑋 ∈ Word 𝑆 ) |
11 |
|
wrdf |
⊢ ( 𝑋 ∈ Word 𝑆 → 𝑋 : ( 0 ..^ ( ♯ ‘ 𝑋 ) ) ⟶ 𝑆 ) |
12 |
10 11
|
syl |
⊢ ( ( 𝐾 ∈ 𝑉 ∧ 𝑁 ∈ ℕ0 ∧ ( 𝑋 ∈ Word 𝑆 ∧ ( ♯ ‘ 𝑋 ) = 𝑁 ) ) → 𝑋 : ( 0 ..^ ( ♯ ‘ 𝑋 ) ) ⟶ 𝑆 ) |
13 |
|
simp3r |
⊢ ( ( 𝐾 ∈ 𝑉 ∧ 𝑁 ∈ ℕ0 ∧ ( 𝑋 ∈ Word 𝑆 ∧ ( ♯ ‘ 𝑋 ) = 𝑁 ) ) → ( ♯ ‘ 𝑋 ) = 𝑁 ) |
14 |
13
|
oveq2d |
⊢ ( ( 𝐾 ∈ 𝑉 ∧ 𝑁 ∈ ℕ0 ∧ ( 𝑋 ∈ Word 𝑆 ∧ ( ♯ ‘ 𝑋 ) = 𝑁 ) ) → ( 0 ..^ ( ♯ ‘ 𝑋 ) ) = ( 0 ..^ 𝑁 ) ) |
15 |
14
|
feq2d |
⊢ ( ( 𝐾 ∈ 𝑉 ∧ 𝑁 ∈ ℕ0 ∧ ( 𝑋 ∈ Word 𝑆 ∧ ( ♯ ‘ 𝑋 ) = 𝑁 ) ) → ( 𝑋 : ( 0 ..^ ( ♯ ‘ 𝑋 ) ) ⟶ 𝑆 ↔ 𝑋 : ( 0 ..^ 𝑁 ) ⟶ 𝑆 ) ) |
16 |
12 15
|
mpbid |
⊢ ( ( 𝐾 ∈ 𝑉 ∧ 𝑁 ∈ ℕ0 ∧ ( 𝑋 ∈ Word 𝑆 ∧ ( ♯ ‘ 𝑋 ) = 𝑁 ) ) → 𝑋 : ( 0 ..^ 𝑁 ) ⟶ 𝑆 ) |
17 |
|
simp1 |
⊢ ( ( 𝐾 ∈ 𝑉 ∧ 𝑁 ∈ ℕ0 ∧ ( 𝑋 ∈ Word 𝑆 ∧ ( ♯ ‘ 𝑋 ) = 𝑁 ) ) → 𝐾 ∈ 𝑉 ) |
18 |
|
fzofi |
⊢ ( 0 ..^ 𝑁 ) ∈ Fin |
19 |
1 3 2
|
frlmfielbas |
⊢ ( ( 𝐾 ∈ 𝑉 ∧ ( 0 ..^ 𝑁 ) ∈ Fin ) → ( 𝑋 ∈ 𝐵 ↔ 𝑋 : ( 0 ..^ 𝑁 ) ⟶ 𝑆 ) ) |
20 |
17 18 19
|
sylancl |
⊢ ( ( 𝐾 ∈ 𝑉 ∧ 𝑁 ∈ ℕ0 ∧ ( 𝑋 ∈ Word 𝑆 ∧ ( ♯ ‘ 𝑋 ) = 𝑁 ) ) → ( 𝑋 ∈ 𝐵 ↔ 𝑋 : ( 0 ..^ 𝑁 ) ⟶ 𝑆 ) ) |
21 |
16 20
|
mpbird |
⊢ ( ( 𝐾 ∈ 𝑉 ∧ 𝑁 ∈ ℕ0 ∧ ( 𝑋 ∈ Word 𝑆 ∧ ( ♯ ‘ 𝑋 ) = 𝑁 ) ) → 𝑋 ∈ 𝐵 ) |
22 |
21
|
3expia |
⊢ ( ( 𝐾 ∈ 𝑉 ∧ 𝑁 ∈ ℕ0 ) → ( ( 𝑋 ∈ Word 𝑆 ∧ ( ♯ ‘ 𝑋 ) = 𝑁 ) → 𝑋 ∈ 𝐵 ) ) |
23 |
9 22
|
impbid |
⊢ ( ( 𝐾 ∈ 𝑉 ∧ 𝑁 ∈ ℕ0 ) → ( 𝑋 ∈ 𝐵 ↔ ( 𝑋 ∈ Word 𝑆 ∧ ( ♯ ‘ 𝑋 ) = 𝑁 ) ) ) |