| Step |
Hyp |
Ref |
Expression |
| 1 |
|
fseq1m1p1.1 |
|- H = { <. N , B >. } |
| 2 |
|
nnm1nn0 |
|- ( N e. NN -> ( N - 1 ) e. NN0 ) |
| 3 |
|
eqid |
|- { <. ( ( N - 1 ) + 1 ) , B >. } = { <. ( ( N - 1 ) + 1 ) , B >. } |
| 4 |
3
|
fseq1p1m1 |
|- ( ( N - 1 ) e. NN0 -> ( ( F : ( 1 ... ( N - 1 ) ) --> A /\ B e. A /\ G = ( F u. { <. ( ( N - 1 ) + 1 ) , B >. } ) ) <-> ( G : ( 1 ... ( ( N - 1 ) + 1 ) ) --> A /\ ( G ` ( ( N - 1 ) + 1 ) ) = B /\ F = ( G |` ( 1 ... ( N - 1 ) ) ) ) ) ) |
| 5 |
2 4
|
syl |
|- ( N e. NN -> ( ( F : ( 1 ... ( N - 1 ) ) --> A /\ B e. A /\ G = ( F u. { <. ( ( N - 1 ) + 1 ) , B >. } ) ) <-> ( G : ( 1 ... ( ( N - 1 ) + 1 ) ) --> A /\ ( G ` ( ( N - 1 ) + 1 ) ) = B /\ F = ( G |` ( 1 ... ( N - 1 ) ) ) ) ) ) |
| 6 |
|
nncn |
|- ( N e. NN -> N e. CC ) |
| 7 |
|
ax-1cn |
|- 1 e. CC |
| 8 |
|
npcan |
|- ( ( N e. CC /\ 1 e. CC ) -> ( ( N - 1 ) + 1 ) = N ) |
| 9 |
6 7 8
|
sylancl |
|- ( N e. NN -> ( ( N - 1 ) + 1 ) = N ) |
| 10 |
9
|
opeq1d |
|- ( N e. NN -> <. ( ( N - 1 ) + 1 ) , B >. = <. N , B >. ) |
| 11 |
10
|
sneqd |
|- ( N e. NN -> { <. ( ( N - 1 ) + 1 ) , B >. } = { <. N , B >. } ) |
| 12 |
11 1
|
eqtr4di |
|- ( N e. NN -> { <. ( ( N - 1 ) + 1 ) , B >. } = H ) |
| 13 |
12
|
uneq2d |
|- ( N e. NN -> ( F u. { <. ( ( N - 1 ) + 1 ) , B >. } ) = ( F u. H ) ) |
| 14 |
13
|
eqeq2d |
|- ( N e. NN -> ( G = ( F u. { <. ( ( N - 1 ) + 1 ) , B >. } ) <-> G = ( F u. H ) ) ) |
| 15 |
14
|
3anbi3d |
|- ( N e. NN -> ( ( F : ( 1 ... ( N - 1 ) ) --> A /\ B e. A /\ G = ( F u. { <. ( ( N - 1 ) + 1 ) , B >. } ) ) <-> ( F : ( 1 ... ( N - 1 ) ) --> A /\ B e. A /\ G = ( F u. H ) ) ) ) |
| 16 |
9
|
oveq2d |
|- ( N e. NN -> ( 1 ... ( ( N - 1 ) + 1 ) ) = ( 1 ... N ) ) |
| 17 |
16
|
feq2d |
|- ( N e. NN -> ( G : ( 1 ... ( ( N - 1 ) + 1 ) ) --> A <-> G : ( 1 ... N ) --> A ) ) |
| 18 |
9
|
fveqeq2d |
|- ( N e. NN -> ( ( G ` ( ( N - 1 ) + 1 ) ) = B <-> ( G ` N ) = B ) ) |
| 19 |
17 18
|
3anbi12d |
|- ( N e. NN -> ( ( G : ( 1 ... ( ( N - 1 ) + 1 ) ) --> A /\ ( G ` ( ( N - 1 ) + 1 ) ) = B /\ F = ( G |` ( 1 ... ( N - 1 ) ) ) ) <-> ( G : ( 1 ... N ) --> A /\ ( G ` N ) = B /\ F = ( G |` ( 1 ... ( N - 1 ) ) ) ) ) ) |
| 20 |
5 15 19
|
3bitr3d |
|- ( N e. NN -> ( ( F : ( 1 ... ( N - 1 ) ) --> A /\ B e. A /\ G = ( F u. H ) ) <-> ( G : ( 1 ... N ) --> A /\ ( G ` N ) = B /\ F = ( G |` ( 1 ... ( N - 1 ) ) ) ) ) ) |