| Step | Hyp | Ref | Expression | 
						
							| 1 |  | sbc6g |  |-  ( N e. ZZ -> ( [. N / k ]. ph <-> A. k ( k = N -> ph ) ) ) | 
						
							| 2 |  | df-ral |  |-  ( A. k e. ( N ... N ) ph <-> A. k ( k e. ( N ... N ) -> ph ) ) | 
						
							| 3 |  | elfz1eq |  |-  ( k e. ( N ... N ) -> k = N ) | 
						
							| 4 |  | elfz3 |  |-  ( N e. ZZ -> N e. ( N ... N ) ) | 
						
							| 5 |  | eleq1 |  |-  ( k = N -> ( k e. ( N ... N ) <-> N e. ( N ... N ) ) ) | 
						
							| 6 | 4 5 | syl5ibrcom |  |-  ( N e. ZZ -> ( k = N -> k e. ( N ... N ) ) ) | 
						
							| 7 | 3 6 | impbid2 |  |-  ( N e. ZZ -> ( k e. ( N ... N ) <-> k = N ) ) | 
						
							| 8 | 7 | imbi1d |  |-  ( N e. ZZ -> ( ( k e. ( N ... N ) -> ph ) <-> ( k = N -> ph ) ) ) | 
						
							| 9 | 8 | albidv |  |-  ( N e. ZZ -> ( A. k ( k e. ( N ... N ) -> ph ) <-> A. k ( k = N -> ph ) ) ) | 
						
							| 10 | 2 9 | bitr2id |  |-  ( N e. ZZ -> ( A. k ( k = N -> ph ) <-> A. k e. ( N ... N ) ph ) ) | 
						
							| 11 | 1 10 | bitr2d |  |-  ( N e. ZZ -> ( A. k e. ( N ... N ) ph <-> [. N / k ]. ph ) ) |