| Step | Hyp | Ref | Expression | 
						
							| 1 |  | sbc6g | ⊢ ( 𝑁  ∈  ℤ  →  ( [ 𝑁  /  𝑘 ] 𝜑  ↔  ∀ 𝑘 ( 𝑘  =  𝑁  →  𝜑 ) ) ) | 
						
							| 2 |  | df-ral | ⊢ ( ∀ 𝑘  ∈  ( 𝑁 ... 𝑁 ) 𝜑  ↔  ∀ 𝑘 ( 𝑘  ∈  ( 𝑁 ... 𝑁 )  →  𝜑 ) ) | 
						
							| 3 |  | elfz1eq | ⊢ ( 𝑘  ∈  ( 𝑁 ... 𝑁 )  →  𝑘  =  𝑁 ) | 
						
							| 4 |  | elfz3 | ⊢ ( 𝑁  ∈  ℤ  →  𝑁  ∈  ( 𝑁 ... 𝑁 ) ) | 
						
							| 5 |  | eleq1 | ⊢ ( 𝑘  =  𝑁  →  ( 𝑘  ∈  ( 𝑁 ... 𝑁 )  ↔  𝑁  ∈  ( 𝑁 ... 𝑁 ) ) ) | 
						
							| 6 | 4 5 | syl5ibrcom | ⊢ ( 𝑁  ∈  ℤ  →  ( 𝑘  =  𝑁  →  𝑘  ∈  ( 𝑁 ... 𝑁 ) ) ) | 
						
							| 7 | 3 6 | impbid2 | ⊢ ( 𝑁  ∈  ℤ  →  ( 𝑘  ∈  ( 𝑁 ... 𝑁 )  ↔  𝑘  =  𝑁 ) ) | 
						
							| 8 | 7 | imbi1d | ⊢ ( 𝑁  ∈  ℤ  →  ( ( 𝑘  ∈  ( 𝑁 ... 𝑁 )  →  𝜑 )  ↔  ( 𝑘  =  𝑁  →  𝜑 ) ) ) | 
						
							| 9 | 8 | albidv | ⊢ ( 𝑁  ∈  ℤ  →  ( ∀ 𝑘 ( 𝑘  ∈  ( 𝑁 ... 𝑁 )  →  𝜑 )  ↔  ∀ 𝑘 ( 𝑘  =  𝑁  →  𝜑 ) ) ) | 
						
							| 10 | 2 9 | bitr2id | ⊢ ( 𝑁  ∈  ℤ  →  ( ∀ 𝑘 ( 𝑘  =  𝑁  →  𝜑 )  ↔  ∀ 𝑘  ∈  ( 𝑁 ... 𝑁 ) 𝜑 ) ) | 
						
							| 11 | 1 10 | bitr2d | ⊢ ( 𝑁  ∈  ℤ  →  ( ∀ 𝑘  ∈  ( 𝑁 ... 𝑁 ) 𝜑  ↔  [ 𝑁  /  𝑘 ] 𝜑 ) ) |