Step |
Hyp |
Ref |
Expression |
1 |
|
sbc6g |
⊢ ( 𝑁 ∈ ℤ → ( [ 𝑁 / 𝑘 ] 𝜑 ↔ ∀ 𝑘 ( 𝑘 = 𝑁 → 𝜑 ) ) ) |
2 |
|
df-ral |
⊢ ( ∀ 𝑘 ∈ ( 𝑁 ... 𝑁 ) 𝜑 ↔ ∀ 𝑘 ( 𝑘 ∈ ( 𝑁 ... 𝑁 ) → 𝜑 ) ) |
3 |
|
elfz1eq |
⊢ ( 𝑘 ∈ ( 𝑁 ... 𝑁 ) → 𝑘 = 𝑁 ) |
4 |
|
elfz3 |
⊢ ( 𝑁 ∈ ℤ → 𝑁 ∈ ( 𝑁 ... 𝑁 ) ) |
5 |
|
eleq1 |
⊢ ( 𝑘 = 𝑁 → ( 𝑘 ∈ ( 𝑁 ... 𝑁 ) ↔ 𝑁 ∈ ( 𝑁 ... 𝑁 ) ) ) |
6 |
4 5
|
syl5ibrcom |
⊢ ( 𝑁 ∈ ℤ → ( 𝑘 = 𝑁 → 𝑘 ∈ ( 𝑁 ... 𝑁 ) ) ) |
7 |
3 6
|
impbid2 |
⊢ ( 𝑁 ∈ ℤ → ( 𝑘 ∈ ( 𝑁 ... 𝑁 ) ↔ 𝑘 = 𝑁 ) ) |
8 |
7
|
imbi1d |
⊢ ( 𝑁 ∈ ℤ → ( ( 𝑘 ∈ ( 𝑁 ... 𝑁 ) → 𝜑 ) ↔ ( 𝑘 = 𝑁 → 𝜑 ) ) ) |
9 |
8
|
albidv |
⊢ ( 𝑁 ∈ ℤ → ( ∀ 𝑘 ( 𝑘 ∈ ( 𝑁 ... 𝑁 ) → 𝜑 ) ↔ ∀ 𝑘 ( 𝑘 = 𝑁 → 𝜑 ) ) ) |
10 |
2 9
|
bitr2id |
⊢ ( 𝑁 ∈ ℤ → ( ∀ 𝑘 ( 𝑘 = 𝑁 → 𝜑 ) ↔ ∀ 𝑘 ∈ ( 𝑁 ... 𝑁 ) 𝜑 ) ) |
11 |
1 10
|
bitr2d |
⊢ ( 𝑁 ∈ ℤ → ( ∀ 𝑘 ∈ ( 𝑁 ... 𝑁 ) 𝜑 ↔ [ 𝑁 / 𝑘 ] 𝜑 ) ) |