Step |
Hyp |
Ref |
Expression |
1 |
|
fsovd.fs |
|- O = ( a e. _V , b e. _V |-> ( f e. ( ~P b ^m a ) |-> ( y e. b |-> { x e. a | y e. ( f ` x ) } ) ) ) |
2 |
|
fsovd.a |
|- ( ph -> A e. V ) |
3 |
|
fsovd.b |
|- ( ph -> B e. W ) |
4 |
|
fsovfvd.g |
|- G = ( A O B ) |
5 |
1 2 3 4
|
fsovfd |
|- ( ph -> G : ( ~P B ^m A ) --> ( ~P A ^m B ) ) |
6 |
5
|
ffnd |
|- ( ph -> G Fn ( ~P B ^m A ) ) |
7 |
|
eqid |
|- ( B O A ) = ( B O A ) |
8 |
1 3 2 7
|
fsovfd |
|- ( ph -> ( B O A ) : ( ~P A ^m B ) --> ( ~P B ^m A ) ) |
9 |
8
|
ffnd |
|- ( ph -> ( B O A ) Fn ( ~P A ^m B ) ) |
10 |
1 2 3 4 7
|
fsovcnvd |
|- ( ph -> `' G = ( B O A ) ) |
11 |
10
|
fneq1d |
|- ( ph -> ( `' G Fn ( ~P A ^m B ) <-> ( B O A ) Fn ( ~P A ^m B ) ) ) |
12 |
9 11
|
mpbird |
|- ( ph -> `' G Fn ( ~P A ^m B ) ) |
13 |
|
dff1o4 |
|- ( G : ( ~P B ^m A ) -1-1-onto-> ( ~P A ^m B ) <-> ( G Fn ( ~P B ^m A ) /\ `' G Fn ( ~P A ^m B ) ) ) |
14 |
6 12 13
|
sylanbrc |
|- ( ph -> G : ( ~P B ^m A ) -1-1-onto-> ( ~P A ^m B ) ) |