| Step | Hyp | Ref | Expression | 
						
							| 1 |  | opeq12 |  |-  ( ( x = v /\ y = w ) -> <. x , y >. = <. v , w >. ) | 
						
							| 2 | 1 | eqeq2d |  |-  ( ( x = v /\ y = w ) -> ( F = <. x , y >. <-> F = <. v , w >. ) ) | 
						
							| 3 | 2 | cbvex2vw |  |-  ( E. x E. y F = <. x , y >. <-> E. v E. w F = <. v , w >. ) | 
						
							| 4 |  | vex |  |-  v e. _V | 
						
							| 5 |  | vex |  |-  w e. _V | 
						
							| 6 | 4 5 | funopsn |  |-  ( ( Fun F /\ F = <. v , w >. ) -> E. a ( v = { a } /\ F = { <. a , a >. } ) ) | 
						
							| 7 |  | vex |  |-  a e. _V | 
						
							| 8 |  | opeq12 |  |-  ( ( x = a /\ y = a ) -> <. x , y >. = <. a , a >. ) | 
						
							| 9 | 8 | sneqd |  |-  ( ( x = a /\ y = a ) -> { <. x , y >. } = { <. a , a >. } ) | 
						
							| 10 | 9 | eqeq2d |  |-  ( ( x = a /\ y = a ) -> ( F = { <. x , y >. } <-> F = { <. a , a >. } ) ) | 
						
							| 11 | 7 7 10 | spc2ev |  |-  ( F = { <. a , a >. } -> E. x E. y F = { <. x , y >. } ) | 
						
							| 12 | 11 | adantl |  |-  ( ( v = { a } /\ F = { <. a , a >. } ) -> E. x E. y F = { <. x , y >. } ) | 
						
							| 13 | 12 | exlimiv |  |-  ( E. a ( v = { a } /\ F = { <. a , a >. } ) -> E. x E. y F = { <. x , y >. } ) | 
						
							| 14 | 6 13 | syl |  |-  ( ( Fun F /\ F = <. v , w >. ) -> E. x E. y F = { <. x , y >. } ) | 
						
							| 15 | 14 | expcom |  |-  ( F = <. v , w >. -> ( Fun F -> E. x E. y F = { <. x , y >. } ) ) | 
						
							| 16 |  | vex |  |-  x e. _V | 
						
							| 17 |  | vex |  |-  y e. _V | 
						
							| 18 | 16 17 | funsn |  |-  Fun { <. x , y >. } | 
						
							| 19 |  | funeq |  |-  ( F = { <. x , y >. } -> ( Fun F <-> Fun { <. x , y >. } ) ) | 
						
							| 20 | 18 19 | mpbiri |  |-  ( F = { <. x , y >. } -> Fun F ) | 
						
							| 21 | 20 | exlimivv |  |-  ( E. x E. y F = { <. x , y >. } -> Fun F ) | 
						
							| 22 | 15 21 | impbid1 |  |-  ( F = <. v , w >. -> ( Fun F <-> E. x E. y F = { <. x , y >. } ) ) | 
						
							| 23 | 22 | exlimivv |  |-  ( E. v E. w F = <. v , w >. -> ( Fun F <-> E. x E. y F = { <. x , y >. } ) ) | 
						
							| 24 | 3 23 | sylbi |  |-  ( E. x E. y F = <. x , y >. -> ( Fun F <-> E. x E. y F = { <. x , y >. } ) ) |