Step |
Hyp |
Ref |
Expression |
1 |
|
opeq12 |
|- ( ( x = v /\ y = w ) -> <. x , y >. = <. v , w >. ) |
2 |
1
|
eqeq2d |
|- ( ( x = v /\ y = w ) -> ( F = <. x , y >. <-> F = <. v , w >. ) ) |
3 |
2
|
cbvex2vw |
|- ( E. x E. y F = <. x , y >. <-> E. v E. w F = <. v , w >. ) |
4 |
|
vex |
|- v e. _V |
5 |
|
vex |
|- w e. _V |
6 |
4 5
|
funopsn |
|- ( ( Fun F /\ F = <. v , w >. ) -> E. a ( v = { a } /\ F = { <. a , a >. } ) ) |
7 |
|
vex |
|- a e. _V |
8 |
|
opeq12 |
|- ( ( x = a /\ y = a ) -> <. x , y >. = <. a , a >. ) |
9 |
8
|
sneqd |
|- ( ( x = a /\ y = a ) -> { <. x , y >. } = { <. a , a >. } ) |
10 |
9
|
eqeq2d |
|- ( ( x = a /\ y = a ) -> ( F = { <. x , y >. } <-> F = { <. a , a >. } ) ) |
11 |
7 7 10
|
spc2ev |
|- ( F = { <. a , a >. } -> E. x E. y F = { <. x , y >. } ) |
12 |
11
|
adantl |
|- ( ( v = { a } /\ F = { <. a , a >. } ) -> E. x E. y F = { <. x , y >. } ) |
13 |
12
|
exlimiv |
|- ( E. a ( v = { a } /\ F = { <. a , a >. } ) -> E. x E. y F = { <. x , y >. } ) |
14 |
6 13
|
syl |
|- ( ( Fun F /\ F = <. v , w >. ) -> E. x E. y F = { <. x , y >. } ) |
15 |
14
|
expcom |
|- ( F = <. v , w >. -> ( Fun F -> E. x E. y F = { <. x , y >. } ) ) |
16 |
|
vex |
|- x e. _V |
17 |
|
vex |
|- y e. _V |
18 |
16 17
|
funsn |
|- Fun { <. x , y >. } |
19 |
|
funeq |
|- ( F = { <. x , y >. } -> ( Fun F <-> Fun { <. x , y >. } ) ) |
20 |
18 19
|
mpbiri |
|- ( F = { <. x , y >. } -> Fun F ) |
21 |
20
|
exlimivv |
|- ( E. x E. y F = { <. x , y >. } -> Fun F ) |
22 |
15 21
|
impbid1 |
|- ( F = <. v , w >. -> ( Fun F <-> E. x E. y F = { <. x , y >. } ) ) |
23 |
22
|
exlimivv |
|- ( E. v E. w F = <. v , w >. -> ( Fun F <-> E. x E. y F = { <. x , y >. } ) ) |
24 |
3 23
|
sylbi |
|- ( E. x E. y F = <. x , y >. -> ( Fun F <-> E. x E. y F = { <. x , y >. } ) ) |