| Step | Hyp | Ref | Expression | 
						
							| 1 |  | funssres |  |-  ( ( Fun H /\ F C_ H ) -> ( H |` dom F ) = F ) | 
						
							| 2 | 1 | ex |  |-  ( Fun H -> ( F C_ H -> ( H |` dom F ) = F ) ) | 
						
							| 3 |  | funssres |  |-  ( ( Fun H /\ G C_ H ) -> ( H |` dom G ) = G ) | 
						
							| 4 | 3 | ex |  |-  ( Fun H -> ( G C_ H -> ( H |` dom G ) = G ) ) | 
						
							| 5 | 2 4 | anim12d |  |-  ( Fun H -> ( ( F C_ H /\ G C_ H ) -> ( ( H |` dom F ) = F /\ ( H |` dom G ) = G ) ) ) | 
						
							| 6 |  | ssres2 |  |-  ( dom F C_ dom G -> ( H |` dom F ) C_ ( H |` dom G ) ) | 
						
							| 7 |  | ssres2 |  |-  ( dom G C_ dom F -> ( H |` dom G ) C_ ( H |` dom F ) ) | 
						
							| 8 | 6 7 | orim12i |  |-  ( ( dom F C_ dom G \/ dom G C_ dom F ) -> ( ( H |` dom F ) C_ ( H |` dom G ) \/ ( H |` dom G ) C_ ( H |` dom F ) ) ) | 
						
							| 9 |  | sseq12 |  |-  ( ( ( H |` dom F ) = F /\ ( H |` dom G ) = G ) -> ( ( H |` dom F ) C_ ( H |` dom G ) <-> F C_ G ) ) | 
						
							| 10 |  | sseq12 |  |-  ( ( ( H |` dom G ) = G /\ ( H |` dom F ) = F ) -> ( ( H |` dom G ) C_ ( H |` dom F ) <-> G C_ F ) ) | 
						
							| 11 | 10 | ancoms |  |-  ( ( ( H |` dom F ) = F /\ ( H |` dom G ) = G ) -> ( ( H |` dom G ) C_ ( H |` dom F ) <-> G C_ F ) ) | 
						
							| 12 | 9 11 | orbi12d |  |-  ( ( ( H |` dom F ) = F /\ ( H |` dom G ) = G ) -> ( ( ( H |` dom F ) C_ ( H |` dom G ) \/ ( H |` dom G ) C_ ( H |` dom F ) ) <-> ( F C_ G \/ G C_ F ) ) ) | 
						
							| 13 | 8 12 | imbitrid |  |-  ( ( ( H |` dom F ) = F /\ ( H |` dom G ) = G ) -> ( ( dom F C_ dom G \/ dom G C_ dom F ) -> ( F C_ G \/ G C_ F ) ) ) | 
						
							| 14 | 5 13 | syl6 |  |-  ( Fun H -> ( ( F C_ H /\ G C_ H ) -> ( ( dom F C_ dom G \/ dom G C_ dom F ) -> ( F C_ G \/ G C_ F ) ) ) ) | 
						
							| 15 | 14 | 3imp |  |-  ( ( Fun H /\ ( F C_ H /\ G C_ H ) /\ ( dom F C_ dom G \/ dom G C_ dom F ) ) -> ( F C_ G \/ G C_ F ) ) | 
						
							| 16 |  | sspsstri |  |-  ( ( F C_ G \/ G C_ F ) <-> ( F C. G \/ F = G \/ G C. F ) ) | 
						
							| 17 | 15 16 | sylib |  |-  ( ( Fun H /\ ( F C_ H /\ G C_ H ) /\ ( dom F C_ dom G \/ dom G C_ dom F ) ) -> ( F C. G \/ F = G \/ G C. F ) ) |