| Step | Hyp | Ref | Expression | 
						
							| 1 |  | funssres | ⊢ ( ( Fun  𝐻  ∧  𝐹  ⊆  𝐻 )  →  ( 𝐻  ↾  dom  𝐹 )  =  𝐹 ) | 
						
							| 2 | 1 | ex | ⊢ ( Fun  𝐻  →  ( 𝐹  ⊆  𝐻  →  ( 𝐻  ↾  dom  𝐹 )  =  𝐹 ) ) | 
						
							| 3 |  | funssres | ⊢ ( ( Fun  𝐻  ∧  𝐺  ⊆  𝐻 )  →  ( 𝐻  ↾  dom  𝐺 )  =  𝐺 ) | 
						
							| 4 | 3 | ex | ⊢ ( Fun  𝐻  →  ( 𝐺  ⊆  𝐻  →  ( 𝐻  ↾  dom  𝐺 )  =  𝐺 ) ) | 
						
							| 5 | 2 4 | anim12d | ⊢ ( Fun  𝐻  →  ( ( 𝐹  ⊆  𝐻  ∧  𝐺  ⊆  𝐻 )  →  ( ( 𝐻  ↾  dom  𝐹 )  =  𝐹  ∧  ( 𝐻  ↾  dom  𝐺 )  =  𝐺 ) ) ) | 
						
							| 6 |  | ssres2 | ⊢ ( dom  𝐹  ⊆  dom  𝐺  →  ( 𝐻  ↾  dom  𝐹 )  ⊆  ( 𝐻  ↾  dom  𝐺 ) ) | 
						
							| 7 |  | ssres2 | ⊢ ( dom  𝐺  ⊆  dom  𝐹  →  ( 𝐻  ↾  dom  𝐺 )  ⊆  ( 𝐻  ↾  dom  𝐹 ) ) | 
						
							| 8 | 6 7 | orim12i | ⊢ ( ( dom  𝐹  ⊆  dom  𝐺  ∨  dom  𝐺  ⊆  dom  𝐹 )  →  ( ( 𝐻  ↾  dom  𝐹 )  ⊆  ( 𝐻  ↾  dom  𝐺 )  ∨  ( 𝐻  ↾  dom  𝐺 )  ⊆  ( 𝐻  ↾  dom  𝐹 ) ) ) | 
						
							| 9 |  | sseq12 | ⊢ ( ( ( 𝐻  ↾  dom  𝐹 )  =  𝐹  ∧  ( 𝐻  ↾  dom  𝐺 )  =  𝐺 )  →  ( ( 𝐻  ↾  dom  𝐹 )  ⊆  ( 𝐻  ↾  dom  𝐺 )  ↔  𝐹  ⊆  𝐺 ) ) | 
						
							| 10 |  | sseq12 | ⊢ ( ( ( 𝐻  ↾  dom  𝐺 )  =  𝐺  ∧  ( 𝐻  ↾  dom  𝐹 )  =  𝐹 )  →  ( ( 𝐻  ↾  dom  𝐺 )  ⊆  ( 𝐻  ↾  dom  𝐹 )  ↔  𝐺  ⊆  𝐹 ) ) | 
						
							| 11 | 10 | ancoms | ⊢ ( ( ( 𝐻  ↾  dom  𝐹 )  =  𝐹  ∧  ( 𝐻  ↾  dom  𝐺 )  =  𝐺 )  →  ( ( 𝐻  ↾  dom  𝐺 )  ⊆  ( 𝐻  ↾  dom  𝐹 )  ↔  𝐺  ⊆  𝐹 ) ) | 
						
							| 12 | 9 11 | orbi12d | ⊢ ( ( ( 𝐻  ↾  dom  𝐹 )  =  𝐹  ∧  ( 𝐻  ↾  dom  𝐺 )  =  𝐺 )  →  ( ( ( 𝐻  ↾  dom  𝐹 )  ⊆  ( 𝐻  ↾  dom  𝐺 )  ∨  ( 𝐻  ↾  dom  𝐺 )  ⊆  ( 𝐻  ↾  dom  𝐹 ) )  ↔  ( 𝐹  ⊆  𝐺  ∨  𝐺  ⊆  𝐹 ) ) ) | 
						
							| 13 | 8 12 | imbitrid | ⊢ ( ( ( 𝐻  ↾  dom  𝐹 )  =  𝐹  ∧  ( 𝐻  ↾  dom  𝐺 )  =  𝐺 )  →  ( ( dom  𝐹  ⊆  dom  𝐺  ∨  dom  𝐺  ⊆  dom  𝐹 )  →  ( 𝐹  ⊆  𝐺  ∨  𝐺  ⊆  𝐹 ) ) ) | 
						
							| 14 | 5 13 | syl6 | ⊢ ( Fun  𝐻  →  ( ( 𝐹  ⊆  𝐻  ∧  𝐺  ⊆  𝐻 )  →  ( ( dom  𝐹  ⊆  dom  𝐺  ∨  dom  𝐺  ⊆  dom  𝐹 )  →  ( 𝐹  ⊆  𝐺  ∨  𝐺  ⊆  𝐹 ) ) ) ) | 
						
							| 15 | 14 | 3imp | ⊢ ( ( Fun  𝐻  ∧  ( 𝐹  ⊆  𝐻  ∧  𝐺  ⊆  𝐻 )  ∧  ( dom  𝐹  ⊆  dom  𝐺  ∨  dom  𝐺  ⊆  dom  𝐹 ) )  →  ( 𝐹  ⊆  𝐺  ∨  𝐺  ⊆  𝐹 ) ) | 
						
							| 16 |  | sspsstri | ⊢ ( ( 𝐹  ⊆  𝐺  ∨  𝐺  ⊆  𝐹 )  ↔  ( 𝐹  ⊊  𝐺  ∨  𝐹  =  𝐺  ∨  𝐺  ⊊  𝐹 ) ) | 
						
							| 17 | 15 16 | sylib | ⊢ ( ( Fun  𝐻  ∧  ( 𝐹  ⊆  𝐻  ∧  𝐺  ⊆  𝐻 )  ∧  ( dom  𝐹  ⊆  dom  𝐺  ∨  dom  𝐺  ⊆  dom  𝐹 ) )  →  ( 𝐹  ⊊  𝐺  ∨  𝐹  =  𝐺  ∨  𝐺  ⊊  𝐹 ) ) |