Step |
Hyp |
Ref |
Expression |
1 |
|
funssres |
⊢ ( ( Fun 𝐻 ∧ 𝐹 ⊆ 𝐻 ) → ( 𝐻 ↾ dom 𝐹 ) = 𝐹 ) |
2 |
1
|
ex |
⊢ ( Fun 𝐻 → ( 𝐹 ⊆ 𝐻 → ( 𝐻 ↾ dom 𝐹 ) = 𝐹 ) ) |
3 |
|
funssres |
⊢ ( ( Fun 𝐻 ∧ 𝐺 ⊆ 𝐻 ) → ( 𝐻 ↾ dom 𝐺 ) = 𝐺 ) |
4 |
3
|
ex |
⊢ ( Fun 𝐻 → ( 𝐺 ⊆ 𝐻 → ( 𝐻 ↾ dom 𝐺 ) = 𝐺 ) ) |
5 |
2 4
|
anim12d |
⊢ ( Fun 𝐻 → ( ( 𝐹 ⊆ 𝐻 ∧ 𝐺 ⊆ 𝐻 ) → ( ( 𝐻 ↾ dom 𝐹 ) = 𝐹 ∧ ( 𝐻 ↾ dom 𝐺 ) = 𝐺 ) ) ) |
6 |
|
ssres2 |
⊢ ( dom 𝐹 ⊆ dom 𝐺 → ( 𝐻 ↾ dom 𝐹 ) ⊆ ( 𝐻 ↾ dom 𝐺 ) ) |
7 |
|
ssres2 |
⊢ ( dom 𝐺 ⊆ dom 𝐹 → ( 𝐻 ↾ dom 𝐺 ) ⊆ ( 𝐻 ↾ dom 𝐹 ) ) |
8 |
6 7
|
orim12i |
⊢ ( ( dom 𝐹 ⊆ dom 𝐺 ∨ dom 𝐺 ⊆ dom 𝐹 ) → ( ( 𝐻 ↾ dom 𝐹 ) ⊆ ( 𝐻 ↾ dom 𝐺 ) ∨ ( 𝐻 ↾ dom 𝐺 ) ⊆ ( 𝐻 ↾ dom 𝐹 ) ) ) |
9 |
|
sseq12 |
⊢ ( ( ( 𝐻 ↾ dom 𝐹 ) = 𝐹 ∧ ( 𝐻 ↾ dom 𝐺 ) = 𝐺 ) → ( ( 𝐻 ↾ dom 𝐹 ) ⊆ ( 𝐻 ↾ dom 𝐺 ) ↔ 𝐹 ⊆ 𝐺 ) ) |
10 |
|
sseq12 |
⊢ ( ( ( 𝐻 ↾ dom 𝐺 ) = 𝐺 ∧ ( 𝐻 ↾ dom 𝐹 ) = 𝐹 ) → ( ( 𝐻 ↾ dom 𝐺 ) ⊆ ( 𝐻 ↾ dom 𝐹 ) ↔ 𝐺 ⊆ 𝐹 ) ) |
11 |
10
|
ancoms |
⊢ ( ( ( 𝐻 ↾ dom 𝐹 ) = 𝐹 ∧ ( 𝐻 ↾ dom 𝐺 ) = 𝐺 ) → ( ( 𝐻 ↾ dom 𝐺 ) ⊆ ( 𝐻 ↾ dom 𝐹 ) ↔ 𝐺 ⊆ 𝐹 ) ) |
12 |
9 11
|
orbi12d |
⊢ ( ( ( 𝐻 ↾ dom 𝐹 ) = 𝐹 ∧ ( 𝐻 ↾ dom 𝐺 ) = 𝐺 ) → ( ( ( 𝐻 ↾ dom 𝐹 ) ⊆ ( 𝐻 ↾ dom 𝐺 ) ∨ ( 𝐻 ↾ dom 𝐺 ) ⊆ ( 𝐻 ↾ dom 𝐹 ) ) ↔ ( 𝐹 ⊆ 𝐺 ∨ 𝐺 ⊆ 𝐹 ) ) ) |
13 |
8 12
|
syl5ib |
⊢ ( ( ( 𝐻 ↾ dom 𝐹 ) = 𝐹 ∧ ( 𝐻 ↾ dom 𝐺 ) = 𝐺 ) → ( ( dom 𝐹 ⊆ dom 𝐺 ∨ dom 𝐺 ⊆ dom 𝐹 ) → ( 𝐹 ⊆ 𝐺 ∨ 𝐺 ⊆ 𝐹 ) ) ) |
14 |
5 13
|
syl6 |
⊢ ( Fun 𝐻 → ( ( 𝐹 ⊆ 𝐻 ∧ 𝐺 ⊆ 𝐻 ) → ( ( dom 𝐹 ⊆ dom 𝐺 ∨ dom 𝐺 ⊆ dom 𝐹 ) → ( 𝐹 ⊆ 𝐺 ∨ 𝐺 ⊆ 𝐹 ) ) ) ) |
15 |
14
|
3imp |
⊢ ( ( Fun 𝐻 ∧ ( 𝐹 ⊆ 𝐻 ∧ 𝐺 ⊆ 𝐻 ) ∧ ( dom 𝐹 ⊆ dom 𝐺 ∨ dom 𝐺 ⊆ dom 𝐹 ) ) → ( 𝐹 ⊆ 𝐺 ∨ 𝐺 ⊆ 𝐹 ) ) |
16 |
|
sspsstri |
⊢ ( ( 𝐹 ⊆ 𝐺 ∨ 𝐺 ⊆ 𝐹 ) ↔ ( 𝐹 ⊊ 𝐺 ∨ 𝐹 = 𝐺 ∨ 𝐺 ⊊ 𝐹 ) ) |
17 |
15 16
|
sylib |
⊢ ( ( Fun 𝐻 ∧ ( 𝐹 ⊆ 𝐻 ∧ 𝐺 ⊆ 𝐻 ) ∧ ( dom 𝐹 ⊆ dom 𝐺 ∨ dom 𝐺 ⊆ dom 𝐹 ) ) → ( 𝐹 ⊊ 𝐺 ∨ 𝐹 = 𝐺 ∨ 𝐺 ⊊ 𝐹 ) ) |