Metamath Proof Explorer


Theorem funpsstri

Description: A condition for subset trichotomy for functions. (Contributed by Scott Fenton, 19-Apr-2011)

Ref Expression
Assertion funpsstri ( ( Fun 𝐻 ∧ ( 𝐹𝐻𝐺𝐻 ) ∧ ( dom 𝐹 ⊆ dom 𝐺 ∨ dom 𝐺 ⊆ dom 𝐹 ) ) → ( 𝐹𝐺𝐹 = 𝐺𝐺𝐹 ) )

Proof

Step Hyp Ref Expression
1 funssres ( ( Fun 𝐻𝐹𝐻 ) → ( 𝐻 ↾ dom 𝐹 ) = 𝐹 )
2 1 ex ( Fun 𝐻 → ( 𝐹𝐻 → ( 𝐻 ↾ dom 𝐹 ) = 𝐹 ) )
3 funssres ( ( Fun 𝐻𝐺𝐻 ) → ( 𝐻 ↾ dom 𝐺 ) = 𝐺 )
4 3 ex ( Fun 𝐻 → ( 𝐺𝐻 → ( 𝐻 ↾ dom 𝐺 ) = 𝐺 ) )
5 2 4 anim12d ( Fun 𝐻 → ( ( 𝐹𝐻𝐺𝐻 ) → ( ( 𝐻 ↾ dom 𝐹 ) = 𝐹 ∧ ( 𝐻 ↾ dom 𝐺 ) = 𝐺 ) ) )
6 ssres2 ( dom 𝐹 ⊆ dom 𝐺 → ( 𝐻 ↾ dom 𝐹 ) ⊆ ( 𝐻 ↾ dom 𝐺 ) )
7 ssres2 ( dom 𝐺 ⊆ dom 𝐹 → ( 𝐻 ↾ dom 𝐺 ) ⊆ ( 𝐻 ↾ dom 𝐹 ) )
8 6 7 orim12i ( ( dom 𝐹 ⊆ dom 𝐺 ∨ dom 𝐺 ⊆ dom 𝐹 ) → ( ( 𝐻 ↾ dom 𝐹 ) ⊆ ( 𝐻 ↾ dom 𝐺 ) ∨ ( 𝐻 ↾ dom 𝐺 ) ⊆ ( 𝐻 ↾ dom 𝐹 ) ) )
9 sseq12 ( ( ( 𝐻 ↾ dom 𝐹 ) = 𝐹 ∧ ( 𝐻 ↾ dom 𝐺 ) = 𝐺 ) → ( ( 𝐻 ↾ dom 𝐹 ) ⊆ ( 𝐻 ↾ dom 𝐺 ) ↔ 𝐹𝐺 ) )
10 sseq12 ( ( ( 𝐻 ↾ dom 𝐺 ) = 𝐺 ∧ ( 𝐻 ↾ dom 𝐹 ) = 𝐹 ) → ( ( 𝐻 ↾ dom 𝐺 ) ⊆ ( 𝐻 ↾ dom 𝐹 ) ↔ 𝐺𝐹 ) )
11 10 ancoms ( ( ( 𝐻 ↾ dom 𝐹 ) = 𝐹 ∧ ( 𝐻 ↾ dom 𝐺 ) = 𝐺 ) → ( ( 𝐻 ↾ dom 𝐺 ) ⊆ ( 𝐻 ↾ dom 𝐹 ) ↔ 𝐺𝐹 ) )
12 9 11 orbi12d ( ( ( 𝐻 ↾ dom 𝐹 ) = 𝐹 ∧ ( 𝐻 ↾ dom 𝐺 ) = 𝐺 ) → ( ( ( 𝐻 ↾ dom 𝐹 ) ⊆ ( 𝐻 ↾ dom 𝐺 ) ∨ ( 𝐻 ↾ dom 𝐺 ) ⊆ ( 𝐻 ↾ dom 𝐹 ) ) ↔ ( 𝐹𝐺𝐺𝐹 ) ) )
13 8 12 syl5ib ( ( ( 𝐻 ↾ dom 𝐹 ) = 𝐹 ∧ ( 𝐻 ↾ dom 𝐺 ) = 𝐺 ) → ( ( dom 𝐹 ⊆ dom 𝐺 ∨ dom 𝐺 ⊆ dom 𝐹 ) → ( 𝐹𝐺𝐺𝐹 ) ) )
14 5 13 syl6 ( Fun 𝐻 → ( ( 𝐹𝐻𝐺𝐻 ) → ( ( dom 𝐹 ⊆ dom 𝐺 ∨ dom 𝐺 ⊆ dom 𝐹 ) → ( 𝐹𝐺𝐺𝐹 ) ) ) )
15 14 3imp ( ( Fun 𝐻 ∧ ( 𝐹𝐻𝐺𝐻 ) ∧ ( dom 𝐹 ⊆ dom 𝐺 ∨ dom 𝐺 ⊆ dom 𝐹 ) ) → ( 𝐹𝐺𝐺𝐹 ) )
16 sspsstri ( ( 𝐹𝐺𝐺𝐹 ) ↔ ( 𝐹𝐺𝐹 = 𝐺𝐺𝐹 ) )
17 15 16 sylib ( ( Fun 𝐻 ∧ ( 𝐹𝐻𝐺𝐻 ) ∧ ( dom 𝐹 ⊆ dom 𝐺 ∨ dom 𝐺 ⊆ dom 𝐹 ) ) → ( 𝐹𝐺𝐹 = 𝐺𝐺𝐹 ) )