| Step |
Hyp |
Ref |
Expression |
| 1 |
|
funssres |
⊢ ( ( Fun 𝐻 ∧ 𝐹 ⊆ 𝐻 ) → ( 𝐻 ↾ dom 𝐹 ) = 𝐹 ) |
| 2 |
1
|
ex |
⊢ ( Fun 𝐻 → ( 𝐹 ⊆ 𝐻 → ( 𝐻 ↾ dom 𝐹 ) = 𝐹 ) ) |
| 3 |
|
funssres |
⊢ ( ( Fun 𝐻 ∧ 𝐺 ⊆ 𝐻 ) → ( 𝐻 ↾ dom 𝐺 ) = 𝐺 ) |
| 4 |
3
|
ex |
⊢ ( Fun 𝐻 → ( 𝐺 ⊆ 𝐻 → ( 𝐻 ↾ dom 𝐺 ) = 𝐺 ) ) |
| 5 |
2 4
|
anim12d |
⊢ ( Fun 𝐻 → ( ( 𝐹 ⊆ 𝐻 ∧ 𝐺 ⊆ 𝐻 ) → ( ( 𝐻 ↾ dom 𝐹 ) = 𝐹 ∧ ( 𝐻 ↾ dom 𝐺 ) = 𝐺 ) ) ) |
| 6 |
|
ssres2 |
⊢ ( dom 𝐹 ⊆ dom 𝐺 → ( 𝐻 ↾ dom 𝐹 ) ⊆ ( 𝐻 ↾ dom 𝐺 ) ) |
| 7 |
|
ssres2 |
⊢ ( dom 𝐺 ⊆ dom 𝐹 → ( 𝐻 ↾ dom 𝐺 ) ⊆ ( 𝐻 ↾ dom 𝐹 ) ) |
| 8 |
6 7
|
orim12i |
⊢ ( ( dom 𝐹 ⊆ dom 𝐺 ∨ dom 𝐺 ⊆ dom 𝐹 ) → ( ( 𝐻 ↾ dom 𝐹 ) ⊆ ( 𝐻 ↾ dom 𝐺 ) ∨ ( 𝐻 ↾ dom 𝐺 ) ⊆ ( 𝐻 ↾ dom 𝐹 ) ) ) |
| 9 |
|
sseq12 |
⊢ ( ( ( 𝐻 ↾ dom 𝐹 ) = 𝐹 ∧ ( 𝐻 ↾ dom 𝐺 ) = 𝐺 ) → ( ( 𝐻 ↾ dom 𝐹 ) ⊆ ( 𝐻 ↾ dom 𝐺 ) ↔ 𝐹 ⊆ 𝐺 ) ) |
| 10 |
|
sseq12 |
⊢ ( ( ( 𝐻 ↾ dom 𝐺 ) = 𝐺 ∧ ( 𝐻 ↾ dom 𝐹 ) = 𝐹 ) → ( ( 𝐻 ↾ dom 𝐺 ) ⊆ ( 𝐻 ↾ dom 𝐹 ) ↔ 𝐺 ⊆ 𝐹 ) ) |
| 11 |
10
|
ancoms |
⊢ ( ( ( 𝐻 ↾ dom 𝐹 ) = 𝐹 ∧ ( 𝐻 ↾ dom 𝐺 ) = 𝐺 ) → ( ( 𝐻 ↾ dom 𝐺 ) ⊆ ( 𝐻 ↾ dom 𝐹 ) ↔ 𝐺 ⊆ 𝐹 ) ) |
| 12 |
9 11
|
orbi12d |
⊢ ( ( ( 𝐻 ↾ dom 𝐹 ) = 𝐹 ∧ ( 𝐻 ↾ dom 𝐺 ) = 𝐺 ) → ( ( ( 𝐻 ↾ dom 𝐹 ) ⊆ ( 𝐻 ↾ dom 𝐺 ) ∨ ( 𝐻 ↾ dom 𝐺 ) ⊆ ( 𝐻 ↾ dom 𝐹 ) ) ↔ ( 𝐹 ⊆ 𝐺 ∨ 𝐺 ⊆ 𝐹 ) ) ) |
| 13 |
8 12
|
imbitrid |
⊢ ( ( ( 𝐻 ↾ dom 𝐹 ) = 𝐹 ∧ ( 𝐻 ↾ dom 𝐺 ) = 𝐺 ) → ( ( dom 𝐹 ⊆ dom 𝐺 ∨ dom 𝐺 ⊆ dom 𝐹 ) → ( 𝐹 ⊆ 𝐺 ∨ 𝐺 ⊆ 𝐹 ) ) ) |
| 14 |
5 13
|
syl6 |
⊢ ( Fun 𝐻 → ( ( 𝐹 ⊆ 𝐻 ∧ 𝐺 ⊆ 𝐻 ) → ( ( dom 𝐹 ⊆ dom 𝐺 ∨ dom 𝐺 ⊆ dom 𝐹 ) → ( 𝐹 ⊆ 𝐺 ∨ 𝐺 ⊆ 𝐹 ) ) ) ) |
| 15 |
14
|
3imp |
⊢ ( ( Fun 𝐻 ∧ ( 𝐹 ⊆ 𝐻 ∧ 𝐺 ⊆ 𝐻 ) ∧ ( dom 𝐹 ⊆ dom 𝐺 ∨ dom 𝐺 ⊆ dom 𝐹 ) ) → ( 𝐹 ⊆ 𝐺 ∨ 𝐺 ⊆ 𝐹 ) ) |
| 16 |
|
sspsstri |
⊢ ( ( 𝐹 ⊆ 𝐺 ∨ 𝐺 ⊆ 𝐹 ) ↔ ( 𝐹 ⊊ 𝐺 ∨ 𝐹 = 𝐺 ∨ 𝐺 ⊊ 𝐹 ) ) |
| 17 |
15 16
|
sylib |
⊢ ( ( Fun 𝐻 ∧ ( 𝐹 ⊆ 𝐻 ∧ 𝐺 ⊆ 𝐻 ) ∧ ( dom 𝐹 ⊆ dom 𝐺 ∨ dom 𝐺 ⊆ dom 𝐹 ) ) → ( 𝐹 ⊊ 𝐺 ∨ 𝐹 = 𝐺 ∨ 𝐺 ⊊ 𝐹 ) ) |