| Step | Hyp | Ref | Expression | 
						
							| 1 |  | pssss | ⊢ ( 𝐹  ⊊  𝐺  →  𝐹  ⊆  𝐺 ) | 
						
							| 2 |  | dmss | ⊢ ( 𝐹  ⊆  𝐺  →  dom  𝐹  ⊆  dom  𝐺 ) | 
						
							| 3 | 1 2 | syl | ⊢ ( 𝐹  ⊊  𝐺  →  dom  𝐹  ⊆  dom  𝐺 ) | 
						
							| 4 | 3 | a1i | ⊢ ( Fun  𝐺  →  ( 𝐹  ⊊  𝐺  →  dom  𝐹  ⊆  dom  𝐺 ) ) | 
						
							| 5 |  | pssdif | ⊢ ( 𝐹  ⊊  𝐺  →  ( 𝐺  ∖  𝐹 )  ≠  ∅ ) | 
						
							| 6 |  | n0 | ⊢ ( ( 𝐺  ∖  𝐹 )  ≠  ∅  ↔  ∃ 𝑝 𝑝  ∈  ( 𝐺  ∖  𝐹 ) ) | 
						
							| 7 | 5 6 | sylib | ⊢ ( 𝐹  ⊊  𝐺  →  ∃ 𝑝 𝑝  ∈  ( 𝐺  ∖  𝐹 ) ) | 
						
							| 8 | 7 | adantl | ⊢ ( ( Fun  𝐺  ∧  𝐹  ⊊  𝐺 )  →  ∃ 𝑝 𝑝  ∈  ( 𝐺  ∖  𝐹 ) ) | 
						
							| 9 |  | funrel | ⊢ ( Fun  𝐺  →  Rel  𝐺 ) | 
						
							| 10 |  | reldif | ⊢ ( Rel  𝐺  →  Rel  ( 𝐺  ∖  𝐹 ) ) | 
						
							| 11 | 9 10 | syl | ⊢ ( Fun  𝐺  →  Rel  ( 𝐺  ∖  𝐹 ) ) | 
						
							| 12 |  | elrel | ⊢ ( ( Rel  ( 𝐺  ∖  𝐹 )  ∧  𝑝  ∈  ( 𝐺  ∖  𝐹 ) )  →  ∃ 𝑥 ∃ 𝑦 𝑝  =  〈 𝑥 ,  𝑦 〉 ) | 
						
							| 13 |  | eleq1 | ⊢ ( 𝑝  =  〈 𝑥 ,  𝑦 〉  →  ( 𝑝  ∈  ( 𝐺  ∖  𝐹 )  ↔  〈 𝑥 ,  𝑦 〉  ∈  ( 𝐺  ∖  𝐹 ) ) ) | 
						
							| 14 |  | df-br | ⊢ ( 𝑥 ( 𝐺  ∖  𝐹 ) 𝑦  ↔  〈 𝑥 ,  𝑦 〉  ∈  ( 𝐺  ∖  𝐹 ) ) | 
						
							| 15 | 13 14 | bitr4di | ⊢ ( 𝑝  =  〈 𝑥 ,  𝑦 〉  →  ( 𝑝  ∈  ( 𝐺  ∖  𝐹 )  ↔  𝑥 ( 𝐺  ∖  𝐹 ) 𝑦 ) ) | 
						
							| 16 | 15 | biimpcd | ⊢ ( 𝑝  ∈  ( 𝐺  ∖  𝐹 )  →  ( 𝑝  =  〈 𝑥 ,  𝑦 〉  →  𝑥 ( 𝐺  ∖  𝐹 ) 𝑦 ) ) | 
						
							| 17 | 16 | adantl | ⊢ ( ( Rel  ( 𝐺  ∖  𝐹 )  ∧  𝑝  ∈  ( 𝐺  ∖  𝐹 ) )  →  ( 𝑝  =  〈 𝑥 ,  𝑦 〉  →  𝑥 ( 𝐺  ∖  𝐹 ) 𝑦 ) ) | 
						
							| 18 | 17 | 2eximdv | ⊢ ( ( Rel  ( 𝐺  ∖  𝐹 )  ∧  𝑝  ∈  ( 𝐺  ∖  𝐹 ) )  →  ( ∃ 𝑥 ∃ 𝑦 𝑝  =  〈 𝑥 ,  𝑦 〉  →  ∃ 𝑥 ∃ 𝑦 𝑥 ( 𝐺  ∖  𝐹 ) 𝑦 ) ) | 
						
							| 19 | 12 18 | mpd | ⊢ ( ( Rel  ( 𝐺  ∖  𝐹 )  ∧  𝑝  ∈  ( 𝐺  ∖  𝐹 ) )  →  ∃ 𝑥 ∃ 𝑦 𝑥 ( 𝐺  ∖  𝐹 ) 𝑦 ) | 
						
							| 20 | 19 | ex | ⊢ ( Rel  ( 𝐺  ∖  𝐹 )  →  ( 𝑝  ∈  ( 𝐺  ∖  𝐹 )  →  ∃ 𝑥 ∃ 𝑦 𝑥 ( 𝐺  ∖  𝐹 ) 𝑦 ) ) | 
						
							| 21 | 11 20 | syl | ⊢ ( Fun  𝐺  →  ( 𝑝  ∈  ( 𝐺  ∖  𝐹 )  →  ∃ 𝑥 ∃ 𝑦 𝑥 ( 𝐺  ∖  𝐹 ) 𝑦 ) ) | 
						
							| 22 | 21 | adantr | ⊢ ( ( Fun  𝐺  ∧  𝐹  ⊊  𝐺 )  →  ( 𝑝  ∈  ( 𝐺  ∖  𝐹 )  →  ∃ 𝑥 ∃ 𝑦 𝑥 ( 𝐺  ∖  𝐹 ) 𝑦 ) ) | 
						
							| 23 |  | difss | ⊢ ( 𝐺  ∖  𝐹 )  ⊆  𝐺 | 
						
							| 24 | 23 | ssbri | ⊢ ( 𝑥 ( 𝐺  ∖  𝐹 ) 𝑦  →  𝑥 𝐺 𝑦 ) | 
						
							| 25 | 24 | eximi | ⊢ ( ∃ 𝑦 𝑥 ( 𝐺  ∖  𝐹 ) 𝑦  →  ∃ 𝑦 𝑥 𝐺 𝑦 ) | 
						
							| 26 | 25 | a1i | ⊢ ( ( Fun  𝐺  ∧  𝐹  ⊊  𝐺 )  →  ( ∃ 𝑦 𝑥 ( 𝐺  ∖  𝐹 ) 𝑦  →  ∃ 𝑦 𝑥 𝐺 𝑦 ) ) | 
						
							| 27 |  | brdif | ⊢ ( 𝑥 ( 𝐺  ∖  𝐹 ) 𝑦  ↔  ( 𝑥 𝐺 𝑦  ∧  ¬  𝑥 𝐹 𝑦 ) ) | 
						
							| 28 | 27 | simprbi | ⊢ ( 𝑥 ( 𝐺  ∖  𝐹 ) 𝑦  →  ¬  𝑥 𝐹 𝑦 ) | 
						
							| 29 | 28 | adantl | ⊢ ( ( ( Fun  𝐺  ∧  𝐹  ⊊  𝐺 )  ∧  𝑥 ( 𝐺  ∖  𝐹 ) 𝑦 )  →  ¬  𝑥 𝐹 𝑦 ) | 
						
							| 30 | 1 | ssbrd | ⊢ ( 𝐹  ⊊  𝐺  →  ( 𝑥 𝐹 𝑧  →  𝑥 𝐺 𝑧 ) ) | 
						
							| 31 | 30 | ad2antlr | ⊢ ( ( ( Fun  𝐺  ∧  𝐹  ⊊  𝐺 )  ∧  𝑥 ( 𝐺  ∖  𝐹 ) 𝑦 )  →  ( 𝑥 𝐹 𝑧  →  𝑥 𝐺 𝑧 ) ) | 
						
							| 32 |  | dffun2 | ⊢ ( Fun  𝐺  ↔  ( Rel  𝐺  ∧  ∀ 𝑥 ∀ 𝑦 ∀ 𝑧 ( ( 𝑥 𝐺 𝑦  ∧  𝑥 𝐺 𝑧 )  →  𝑦  =  𝑧 ) ) ) | 
						
							| 33 | 32 | simprbi | ⊢ ( Fun  𝐺  →  ∀ 𝑥 ∀ 𝑦 ∀ 𝑧 ( ( 𝑥 𝐺 𝑦  ∧  𝑥 𝐺 𝑧 )  →  𝑦  =  𝑧 ) ) | 
						
							| 34 |  | 2sp | ⊢ ( ∀ 𝑦 ∀ 𝑧 ( ( 𝑥 𝐺 𝑦  ∧  𝑥 𝐺 𝑧 )  →  𝑦  =  𝑧 )  →  ( ( 𝑥 𝐺 𝑦  ∧  𝑥 𝐺 𝑧 )  →  𝑦  =  𝑧 ) ) | 
						
							| 35 | 34 | sps | ⊢ ( ∀ 𝑥 ∀ 𝑦 ∀ 𝑧 ( ( 𝑥 𝐺 𝑦  ∧  𝑥 𝐺 𝑧 )  →  𝑦  =  𝑧 )  →  ( ( 𝑥 𝐺 𝑦  ∧  𝑥 𝐺 𝑧 )  →  𝑦  =  𝑧 ) ) | 
						
							| 36 | 33 35 | syl | ⊢ ( Fun  𝐺  →  ( ( 𝑥 𝐺 𝑦  ∧  𝑥 𝐺 𝑧 )  →  𝑦  =  𝑧 ) ) | 
						
							| 37 |  | breq2 | ⊢ ( 𝑦  =  𝑧  →  ( 𝑥 𝐹 𝑦  ↔  𝑥 𝐹 𝑧 ) ) | 
						
							| 38 | 37 | biimprd | ⊢ ( 𝑦  =  𝑧  →  ( 𝑥 𝐹 𝑧  →  𝑥 𝐹 𝑦 ) ) | 
						
							| 39 | 36 38 | syl6 | ⊢ ( Fun  𝐺  →  ( ( 𝑥 𝐺 𝑦  ∧  𝑥 𝐺 𝑧 )  →  ( 𝑥 𝐹 𝑧  →  𝑥 𝐹 𝑦 ) ) ) | 
						
							| 40 | 39 | expd | ⊢ ( Fun  𝐺  →  ( 𝑥 𝐺 𝑦  →  ( 𝑥 𝐺 𝑧  →  ( 𝑥 𝐹 𝑧  →  𝑥 𝐹 𝑦 ) ) ) ) | 
						
							| 41 | 27 | simplbi | ⊢ ( 𝑥 ( 𝐺  ∖  𝐹 ) 𝑦  →  𝑥 𝐺 𝑦 ) | 
						
							| 42 | 40 41 | impel | ⊢ ( ( Fun  𝐺  ∧  𝑥 ( 𝐺  ∖  𝐹 ) 𝑦 )  →  ( 𝑥 𝐺 𝑧  →  ( 𝑥 𝐹 𝑧  →  𝑥 𝐹 𝑦 ) ) ) | 
						
							| 43 | 42 | adantlr | ⊢ ( ( ( Fun  𝐺  ∧  𝐹  ⊊  𝐺 )  ∧  𝑥 ( 𝐺  ∖  𝐹 ) 𝑦 )  →  ( 𝑥 𝐺 𝑧  →  ( 𝑥 𝐹 𝑧  →  𝑥 𝐹 𝑦 ) ) ) | 
						
							| 44 | 43 | com23 | ⊢ ( ( ( Fun  𝐺  ∧  𝐹  ⊊  𝐺 )  ∧  𝑥 ( 𝐺  ∖  𝐹 ) 𝑦 )  →  ( 𝑥 𝐹 𝑧  →  ( 𝑥 𝐺 𝑧  →  𝑥 𝐹 𝑦 ) ) ) | 
						
							| 45 | 31 44 | mpdd | ⊢ ( ( ( Fun  𝐺  ∧  𝐹  ⊊  𝐺 )  ∧  𝑥 ( 𝐺  ∖  𝐹 ) 𝑦 )  →  ( 𝑥 𝐹 𝑧  →  𝑥 𝐹 𝑦 ) ) | 
						
							| 46 | 45 | exlimdv | ⊢ ( ( ( Fun  𝐺  ∧  𝐹  ⊊  𝐺 )  ∧  𝑥 ( 𝐺  ∖  𝐹 ) 𝑦 )  →  ( ∃ 𝑧 𝑥 𝐹 𝑧  →  𝑥 𝐹 𝑦 ) ) | 
						
							| 47 | 29 46 | mtod | ⊢ ( ( ( Fun  𝐺  ∧  𝐹  ⊊  𝐺 )  ∧  𝑥 ( 𝐺  ∖  𝐹 ) 𝑦 )  →  ¬  ∃ 𝑧 𝑥 𝐹 𝑧 ) | 
						
							| 48 | 47 | ex | ⊢ ( ( Fun  𝐺  ∧  𝐹  ⊊  𝐺 )  →  ( 𝑥 ( 𝐺  ∖  𝐹 ) 𝑦  →  ¬  ∃ 𝑧 𝑥 𝐹 𝑧 ) ) | 
						
							| 49 | 48 | exlimdv | ⊢ ( ( Fun  𝐺  ∧  𝐹  ⊊  𝐺 )  →  ( ∃ 𝑦 𝑥 ( 𝐺  ∖  𝐹 ) 𝑦  →  ¬  ∃ 𝑧 𝑥 𝐹 𝑧 ) ) | 
						
							| 50 | 26 49 | jcad | ⊢ ( ( Fun  𝐺  ∧  𝐹  ⊊  𝐺 )  →  ( ∃ 𝑦 𝑥 ( 𝐺  ∖  𝐹 ) 𝑦  →  ( ∃ 𝑦 𝑥 𝐺 𝑦  ∧  ¬  ∃ 𝑧 𝑥 𝐹 𝑧 ) ) ) | 
						
							| 51 | 50 | eximdv | ⊢ ( ( Fun  𝐺  ∧  𝐹  ⊊  𝐺 )  →  ( ∃ 𝑥 ∃ 𝑦 𝑥 ( 𝐺  ∖  𝐹 ) 𝑦  →  ∃ 𝑥 ( ∃ 𝑦 𝑥 𝐺 𝑦  ∧  ¬  ∃ 𝑧 𝑥 𝐹 𝑧 ) ) ) | 
						
							| 52 | 22 51 | syld | ⊢ ( ( Fun  𝐺  ∧  𝐹  ⊊  𝐺 )  →  ( 𝑝  ∈  ( 𝐺  ∖  𝐹 )  →  ∃ 𝑥 ( ∃ 𝑦 𝑥 𝐺 𝑦  ∧  ¬  ∃ 𝑧 𝑥 𝐹 𝑧 ) ) ) | 
						
							| 53 | 52 | exlimdv | ⊢ ( ( Fun  𝐺  ∧  𝐹  ⊊  𝐺 )  →  ( ∃ 𝑝 𝑝  ∈  ( 𝐺  ∖  𝐹 )  →  ∃ 𝑥 ( ∃ 𝑦 𝑥 𝐺 𝑦  ∧  ¬  ∃ 𝑧 𝑥 𝐹 𝑧 ) ) ) | 
						
							| 54 | 8 53 | mpd | ⊢ ( ( Fun  𝐺  ∧  𝐹  ⊊  𝐺 )  →  ∃ 𝑥 ( ∃ 𝑦 𝑥 𝐺 𝑦  ∧  ¬  ∃ 𝑧 𝑥 𝐹 𝑧 ) ) | 
						
							| 55 |  | nss | ⊢ ( ¬  dom  𝐺  ⊆  dom  𝐹  ↔  ∃ 𝑥 ( 𝑥  ∈  dom  𝐺  ∧  ¬  𝑥  ∈  dom  𝐹 ) ) | 
						
							| 56 |  | vex | ⊢ 𝑥  ∈  V | 
						
							| 57 | 56 | eldm | ⊢ ( 𝑥  ∈  dom  𝐺  ↔  ∃ 𝑦 𝑥 𝐺 𝑦 ) | 
						
							| 58 | 56 | eldm | ⊢ ( 𝑥  ∈  dom  𝐹  ↔  ∃ 𝑧 𝑥 𝐹 𝑧 ) | 
						
							| 59 | 58 | notbii | ⊢ ( ¬  𝑥  ∈  dom  𝐹  ↔  ¬  ∃ 𝑧 𝑥 𝐹 𝑧 ) | 
						
							| 60 | 57 59 | anbi12i | ⊢ ( ( 𝑥  ∈  dom  𝐺  ∧  ¬  𝑥  ∈  dom  𝐹 )  ↔  ( ∃ 𝑦 𝑥 𝐺 𝑦  ∧  ¬  ∃ 𝑧 𝑥 𝐹 𝑧 ) ) | 
						
							| 61 | 60 | exbii | ⊢ ( ∃ 𝑥 ( 𝑥  ∈  dom  𝐺  ∧  ¬  𝑥  ∈  dom  𝐹 )  ↔  ∃ 𝑥 ( ∃ 𝑦 𝑥 𝐺 𝑦  ∧  ¬  ∃ 𝑧 𝑥 𝐹 𝑧 ) ) | 
						
							| 62 | 55 61 | bitri | ⊢ ( ¬  dom  𝐺  ⊆  dom  𝐹  ↔  ∃ 𝑥 ( ∃ 𝑦 𝑥 𝐺 𝑦  ∧  ¬  ∃ 𝑧 𝑥 𝐹 𝑧 ) ) | 
						
							| 63 | 54 62 | sylibr | ⊢ ( ( Fun  𝐺  ∧  𝐹  ⊊  𝐺 )  →  ¬  dom  𝐺  ⊆  dom  𝐹 ) | 
						
							| 64 | 63 | ex | ⊢ ( Fun  𝐺  →  ( 𝐹  ⊊  𝐺  →  ¬  dom  𝐺  ⊆  dom  𝐹 ) ) | 
						
							| 65 | 4 64 | jcad | ⊢ ( Fun  𝐺  →  ( 𝐹  ⊊  𝐺  →  ( dom  𝐹  ⊆  dom  𝐺  ∧  ¬  dom  𝐺  ⊆  dom  𝐹 ) ) ) | 
						
							| 66 |  | dfpss3 | ⊢ ( dom  𝐹  ⊊  dom  𝐺  ↔  ( dom  𝐹  ⊆  dom  𝐺  ∧  ¬  dom  𝐺  ⊆  dom  𝐹 ) ) | 
						
							| 67 | 65 66 | imbitrrdi | ⊢ ( Fun  𝐺  →  ( 𝐹  ⊊  𝐺  →  dom  𝐹  ⊊  dom  𝐺 ) ) |